Algorithms

Jeff Erickson
[[=
h L] h
iz
H A
ﬁ [] q
]
R BN

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

© Copyright 1999—2015 Jeff Erickson. Last update January 4, 2015.

This work may be freely copied and distributed in any medium.
It may not be sold for more than the actual cost of reproduction, storage, or transmittal.

This work is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
For license details, see http://creativecommons.org/licenses/by-nc-sa/4.0/.

For the most recent edition, see http://www.cs.illinois.edu/~jeffe/teaching/algorithms/.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

Shall | tell you, my friend, how you will come to understand it?
Go and write a book on it.

— Henry Home, Lord Kames (1696-1782), to Sir Gilbert Elliot

The individual is always mistaken. He designed many things, and drew in other
persons as coadjutors, quarrelled with some or all, blundered much, and some-
thing is done; all are a little advanced, but the individual is always mistaken. It
turns out somewhat new and very unlike what he promised himself.

— Ralph Waldo Emerson, “Experience”, Essays, Second Series (1844)

Theoretical lectures should neither be a reproduction of
nor a comment upon any text-book, however satisfactory.
The student’s notebook should be his principal text-book.

— André Weil, “Mathematical Teaching in Universities” (1954)

About These Notes

These are lecture notes that I wrote for various algorithms classes at the University of
Illinois at Urbana-Champaign, which I have taught on average once a year since January
1999. The most recent revision of these notes (or nearly so) is available online at http:
//www.cs.illinois.edu/~jeffe/teaching/algorithms/, along with a near-complete archive of all
my past homeworks and exams. Whenever I teach an algorithms class, I revise, update, and
sometimes cull these notes as the course progresses, so you may find more recent versions on the
web page of whatever course I am currently teaching.

With few exceptions, each of these “lecture notes” contains far too much material to cover in
a single lecture. In a typical 75-minute class period, I cover about 4 or 5 pages of material—a
bit more if I'm teaching graduate students than undergraduates. Moreover, I can only cover at
most two-thirds of these notes in any capacity in a single 15-week semester. Your mileage may
vary! (Arguably, that means that as I continue to add material, the label “lecture notes” becomes
less and less accurate.) I teach algorithms at multiple leaves; different courses cover different
but overlapping subsets of this material. The ordering of the notes is mostly consistent with my
lower-level classes, with more advanced material (indicated by *stars) inserted near the more
basic material it builds on. The actual material doesn’t permit a strict linear ordering, but I've
tried to keep forward references to a minimum.

About the Exercises

Each note ends with several exercises, most of which have been used at least once in a
homework assignment, discussion section, or exam. *Stars indicate more challenging problems;
many of these starred problems appeared on qualifying exams for the algorithms PhD students
at UIUC. A small number of really hard problems are marked with a *larger star; one or two
open problems are indicated by Jrenormous stars. Many of these exercises were contributed by
my amazing teaching assistants:

Aditya Ramani, Akash Gautam, Alex Steiger, Alina Ene, Amir Nayyeri, Asha
Seetharam, Ashish Vulimiri, Ben Moseley, Brad Sturt, Brian Ensink, Chao Xu,
Chris Neihengen, Connor Clark, Dan Bullok, Dan Cranston, Daniel Khashabi, David
Morrison, Johnathon Fischer, Junqing Deng, Ekta Manaktala, Erin Wolf Chambers,

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

Gail Steitz, Gio Kao, Grant Czajkowski, Hsien-Chih Chang, Igor Gammer, John Lee,
Kent Quanrud, Kevin Milans, Kevin Small, Kyle Fox, Kyle Jao, Lan Chen, Michael
Bond, Mitch Harris, Naveen Arivazhagen, Nick Bachmair, Nick Hurlburt, Nirman Ku-
mar, Nitish Korula, Rachit Agarwal, Reza Zamani-Nasab, Rishi Talreja, Rob McCann,
Shripad Thite, Subhro Roy, Tana Wattanawaroon, and Yasu Furakawa.

Please do not ask me for solutions to the exercises. If you are a student, seeing the
solution will rob you of the experience of solving the problem yourself, which is the only way to
learn the material. If you are an instructor, you shouldn’t assign problems that you can’t solve
yourself! (Because I don’t always follow my own advice, I sometimes assign buggy problems, but
I've tried to keep these out of the lecture notes themselves.)

‘Johnny’s” multi-colored crayon homework was found under the TA office door among the
other Fall 2000 Homework 1 submissions.

Acknowledgments

All of this material draws heavily on the creativity, wisdom, and experience of thousands
of algorithms students, teachers, and researchers. In particular, I am immensely grateful to
the more than 2000 Illinois students who have used these notes as a primary reference, offered
useful (if sometimes painful) criticism, and suffered through some truly awful first drafts. I'm
also grateful for the contributions and feedback from the teaching assistants listed above. Finally,
thanks to many colleagues at Illinois and elsewhere who have used these notes in their own
classes and have sent helpful feedback and bug reports.

Naturally, these notes owe a great deal to the people who taught me this algorithms stuff in
the first place: Bob Bixby and Michael Pearlman at Rice; David Eppstein, Dan Hirshberg, and
George Lueker at UC Irvine; and Abhiram Ranade, Dick Karp, Manuel Blum, Mike Luby, and
Raimund Seidel at UC Berkeley. I've also been helped tremendously by many discussions with
faculty colleagues at Illinois—Cinda Heeren, Edgar Ramos, Herbert Edelsbrunner, Jason Zych,
Lenny Pitt, Madhu Parasarathy, Mahesh Viswanathan, Margaret Fleck, Shang-Hua Teng, Steve
LaValle, and especially Chandra Chekuri, Ed Reingold, and Sariel Har-Peled. I stole the first
iteration of the overall course structure, and the idea to write up my own lecture notes, from
Herbert Edelsbrunner.

The picture of the Spirit of Arithmetic from Margarita Philosophica at the end of the
introductory notes was copied from Wikimedia Commons; the original 1508 woodcut is in the
public domain. The map on the first page of the maxflow/mincut notes was copied from Lex
Schrijver’s excellent survey “On the history of combinatorial optimization (till 1960)”; the original
map is from a US Government work in the public domain. Several of Randall Munroe’s xked
comic strips are reproduced under a Creative Commons License. One well-known frame from
Allie Brosh’s comic strip Hyperbole and a Half appears twice without permission. (Hire all the
lawyers?)

I drew all other figures in the notes myself using OmniGraffle, except for a few older
figures that I drew with (shudder) xfig. In particular, the square-Kufi rendition of the name
“al-Khwarizm1” on the cover is my own.

ii

Prerequisites

These notes assume the reader has mastered the material covered in the first two years
of a strong undergraduate computer science curriculum, and that they have the intellectual
maturity to recognize and repair any remaining gaps in their mastery. In particular, for most
students, these notes are not suitable for a first course in data structures and algorithms. Specific
prerequisites include the following:

* Discrete mathematics: High-school algebra, logarithm identities, naive set theory, Boolean
algebra, first-order predicate logic, sets, functions, equivalences, partial orders, modular
arithmetic, recursive definitions, trees (as abstract objects, not data structures), graphs.

* Proof techniques: direct, indirect, contradiction, exhaustive case analysis, and induction
(especially “strong” and “structural” induction). Lecture O requires induction, and whenever
Lecture n — 1 requires induction, so does Lecture n.

* Elementary discrete probability: uniform vs non-uniform distributions, expectation,
conditional probability, linearity of expectation, independence.

* Iterative programming concepts: variables, conditionals, loops, indirection (addresses/
pointers/references), subroutines, recursion. I do not assume fluency in any particular
programming language, but I do assume experience with at least one language that
supports indirection and recursion.

* Fundamental abstract data types: scalars, sequences, vectors, sets, stacks, queues,
priority queues, dictionaries.

* Fundamental data structures: arrays, linked lists (single and double, linear and circular),
binary search trees, at least one balanced binary search tree (AVL trees, red-black trees,
treaps, skip lists, splay trees, etc.), binary heaps, hash tables, and most importantly, the
difference between this list and the previous list.

* Fundamental algorithmic problems: sorting, searching, enumeration.

* Fundamental algorithms: elementary arithmetic, sequential search, binary search,
comparison-based sorting (selection, insertion, merge-, heap-, quick-), radix sort, pre-
/post-/inorder tree traversal, breadth- and depth-first search (at least in trees), and most
importantly, the difference between this list and the previous list.

* Basic algorithm analysis: Asymptotic notation (o, O, ©, Q, w), translating loops into
sums and recursive calls into recurrences, evaluating simple sums and recurrences.

* Mathematical maturity: facility with abstraction, formal (especially recursive) defini-
tions, and (especially inductive) proofs; writing and following mathematical arguments;
recognizing and avoiding syntactic, semantic, and/or logical nonsense.

Two notes on prerequisite material appear as an appendix to the main lecture notes: one
on proofs by induction, and one on solving recurrences. The main lecture notes also briefly
cover some prerequisite material, but more as a reminder than a good introduction. For a more
thorough overview, I strongly recommend the following:

» Margaret M. Fleck. Building Blocks for Theoretical Computer Science, unpublished textbook,
most recently revised January 2013.

* Eric Lehman, E Thomson Leighton, and Albert R. Meyer. Mathematics for Computer Science,
unpublished lecture notes, most recent (public) revision January 2013.

iii

http://www.cs.uiuc.edu/~mfleck/building-blocks/
http://opendatastructures.org/LLM.pdf

* Pat Morin. Open Data Structures, most recently revised June 2014 (edition 0.1G). A
permanently free open-source textbook, which Pat maintains and regularly updates.

Additional References

I strongly encourage students (and other readers) not to restrict themselves to my notes
or any other single textual reference. Authors and readers bring their own perspectives to the
material; no instructor “clicks” with every student, or even every very strong student. Finding the
author that most effectively gets their intuition into your head take some effort, but that effort
pays off handsomely in the long run. The following references have been particularly valuable to
me as sources of inspiration, intuition, examples, and problems.

* Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. (I used this textbook as an undergraduate at Rice and
again as a masters student at UC Irvine.)

* Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Introduction to Algorithms,
third edition. MIT Press/McGraw-Hill, 2009. (I used the first edition as a teaching assistant
at Berkeley.)

* Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-
Hill, 2006.

» Jeff Edmonds. How to Think about Algorithms. Cambridge University Press, 2008.

* Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

* Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. John Wiley & Sons, 2002.

* John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation, first edition. Addison-Wesley, 1979. (I used this textbook as an undergraduate
at Rice. Don’t bother with the later editions.)

+ Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.

* Donald Knuth. The Art of Computer Programming, volumes 1—4A. Addison-Wesley, 1997 and
2011. (My parents gave me the first three volumes for Christmas when I was 14, but I didn’t
actually read them until much later.)

* Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989. (I used
this textbook as a teaching assistant at Berkeley.)

* Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

* Jan Parberry. Problems on Algorithms. Prentice-Hall, 1995 (out of print). Available from
http://www.eng.unt.edu/ian/books/free/license.html after promising to make a small
charitable donation. Please honor your promise.

* Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
(Just in case you thought Knuth was the only author who could stun oxen.)

* Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 2011.

iv

http://opendatastructures.org/
http://www.eng.unt.edu/ian/books/free/license.html
http://www.eng.unt.edu/ian/books/free/license.html

» Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2008.

* Michael Sipser. Introduction to the Theory of Computation, third edition. Cengage Learning,
2012. Recommended if and only if you don’t have to pay for it.

* Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.
* Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.

* Class notes from my own algorithms classes at Berkeley, especially those taught by Dick
Karp and Raimund Seidel.

* Lecture notes, slides, homeworks, exams, video lectures, research papers, blog posts, and
full-fledged MOOCs made freely available on the web by innumerable colleagues around
the world.

Caveat Lector!

Despite several rounds of revision, these notes still contain mnay mistakes, errors, bugs,
gaffes, omissions, snafus, kludges, typos, mathos, grammaros, thinkos, brain farts, nonsense,
garbage, cruft, junk, and outright lies, all of which are entirely Steve Skiena’s fault. I revise
and update these notes every time I teach an algorithms class, so please let me know if you find a
bug. (Steve is unlikely to care.) I regularly award extra credit to students who post explanations
and/or corrections of errors in the lecture notes. If 'm not teaching your class, encourage your
instructor to set up a similar extra-credit scheme, and forward the bug reports to-Steve-me!

Of course, any other feedback is also welcome!

Enjoy!

— Jeff

It is traditional for the author to magnanimously accept the blame for whatever deficien-
cies remain. | don’t. Any errors, deficiencies, or problems in this book are somebody
else’s fault, but | would appreciate knowing about them so as to determine who is to
blame.

— Steven S. Skiena, The Algorithm Design Manual (1997)

vi

Contents

o Introduction 1
I Recursion 17
1 RecurSion. 19
2 *Fast Fourier Transforms 45
3 Backtracking 57
4 “Efficient Exponential-Time Algorithms 69
5 Dynamic Programming 75
6 *Advanced Dynamic Programming, 113
7 Greedy Algorithms 119
8 *Matroids. 133
II Randomization 139
9 Randomized Algorithms 141
10 Randomized Binary Search Trees. 157
11 *Tail Inequalities 171
12 Hashing 177
13 String Matching 193
14 Randomized Minimum Cut 207
III Amortization 215
15 Amortized Analysis 217
16 Scapegoat and Splay Trees 231
17 Disjoint Sets. 247
IV Graphs 261
18 Basic Graph Algorithms 263
19 Depth-First Search 277
20 Minimum Spanning Trees 291
21 Single-Source Shortest Paths 303
22 All-Pairs Shortest Paths 317
V Optimization 331
23 Maximum Flows and Minimum CUtS 333
24 Applications of Maximum Flow 347
25 *Extensions of Maximum Flow 359

vii

26 *Linear Programming 369

27 *The Simplex Algorithm 381
VI Hardness 389
28 Lower Bounds 391
29 Adversary ATGUMENtS 397
30 NP-Hard Problems 405
31 *Approximation Algorithms 435
VII Appendices 453
A ProofsbyInduction. 455
B Solving RECUITENCES 483

viii

Algorithms Lecture o: Introduction [Sp’14]

Hinc incipit algorismus.

Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris
0.9.8.7.6.5.4.3.2. 1.

— Friar Alexander de Villa Dei, Carmen de Algorismo, (c. 1220)

We should explain, before proceeding, that it is not our object to consider this program with
reference to the actual arrangement of the data on the Variables of the engine, but simply as
an abstract question of the nature and number of the operations required to be perfomed
during its complete solution.

— Ada Augusta Byron King, Countess of Lovelace, translator’s notes for Luigi F. Menabrea,
“Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

You are right to demand that an artist engage his work consciously, but you confuse two
different things: solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)

The moment a man begins to talk about technique
that’s proof that he is fresh out of ideas.

— Raymond Chandler

o Introduction

0.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elemen-
tary instructions. For example, here is an algorithm for singing that annoying song “99 Bottles of
Beer on the Wall”, for arbitrary values of 99:

BoTTLESOFBEER(N):
Fori < ndownto 1
Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i — 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

The word “algorithm” does not derive, as algorithmophobic classicists might guess, from
the Greek roots arithmos (apt6uog), meaning “number”, and algos (aAyog), meaning “pain”.
Rather, it is a corruption of the name of the gth century Persian mathematician Abi ’Abd Allah
Muhammad ibn Miisa al-Khwarizmi.! Al-Khwarizmi is perhaps best known as the writer of
the treatise Al-Kitab al-mukhtasar fthisab al-abr wa’l-muqabala?, from which the modern word
algebra derives. In another treatise, al-Khwarizmi popularized the modern decimal system for
writing and manipulating numbers—in particular, the use of a small circle or sifr to represent
a missing quantity—which had originated in India several centuries earlier. This system later
became known in Europe as algorism, and its figures became known in English as ciphers.3

“Mohammad, father of Adbdulla, son of Moses, the Kwarizmian’. Kwarizm is an ancient city, now called Khiva, in
the Khorezm Province of Uzbekistan.

2“The Compendious Book on Calculation by Completion and Balancing”

3The Italians transliterated sifr as zefiro, which later evolved into the modern zero.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture o: Introduction [Sp’14]

Thanks to the efforts of the medieval Italian mathematician Leonardo of Pisa, better known as
Fibonacci, algorism began to replace the abacus as the preferred system of commercial calculation
in Europe in the late 12th century. (Indeed, the word calculate derives from the Latin word
calculus, meaning “small rock”, referring to the stones on a counting board, or abacus.) Ciphers
became truly ubiquitous in Western Europe only after the French revolution 600 years after
Fibonacci. The more modern word algorithm is a false cognate with the Greek word arithmos
(aptBuog), meaning ‘number’ (and perhaps the previously mentioned aAyog).* Thus, until
very recently, the word algorithm referred exclusively to pencil-and-paper methods for numerical
calculations. People trained in the reliable execution of these methods were called—you guessed
it—computers.>

0.2 A Few Simple Examples
Multiplication by compass and straightedge

Although they have only been an object of formal study for a few decades, algorithms have
been with us since the dawn of civilization, for centuries before Al-Khwarizmi and Fibonacci
popularized the cypher. Here is an algorithm, popularized (but almost certainly not discovered)
by Euclid about 2500 years ago, for multiplying or dividing numbers using a ruler and compass.
The Greek geometers represented numbers using line segments of the appropriate length. In the
pseudo-code below, CIRCLE(p, q) represents the circle centered at a point p and passing through
another point q. Hopefully the other instructions are obvious.®

{(Construct the line perpendicular to £ and passing through P.))
RiGHTANGLE({, P):

Choose a pointAe {

A, B « INTERSECT(CIRCLE(P,A), {)

C,D « INTERSECT(CIRCLE(A, B), CIRCLE(B, A))

return LINE(C, D)

{(Construct a point Z such that |AZ| = |AC||AD|/|AB|.))
MutrtipLYORDIVIDE(A, B, C, D):
a <« RIGHTANGLE(LINE(A, C),A) D
E « INTERSECT(CIRCLE(A, B),)
F « INTERSECT(CIRCLE(A, D),)
f < RiGHTANGLE(LINE(E, C), F)
y < RIGHTANGLE(f3, F)
return INTERSECT(y, LINE(4, C))

Multiplying or dividing using a compass and straightedge.

4In fact, some medieval English sources claim the Greek prefix “algo-” meant “art” or “introduction”. Other
sources claimed that algorithms was invented by a Greek philosopher; or a king of India, or perhaps a king of Spain,
named “Algus” or “Algor” or “Argus”. A few, possibly including Dante Alighieri, even identified the inventor with
the mythological Greek shipbuilder and eponymous argonaut. I don’t think any serious medieval scholars made the
connection to the Greek work for pain, although I'm quite certain their students did.

” o« ” . ” «

SFrom the Latin verb putare, which variously means “to trim/prune”, “to clean”, “to arrange”, “to value”, “to judge”,
and “to consider/suppose”; also the source of the English words “dispute”, “reputation”, and “amputate”.

6Euclid and his students almost certainly drew their constructions on an abax (affa&), a table covered in dust
or sand (or perhaps very small rocks). Over the next several centuries, the Greek abax evolved into the medieval

European abacus.

Algorithms Lecture o: Introduction [Sp’14]

This algorithm breaks down the difficult task of multiplication into a series of simple primitive
operations: drawing a line between two points, drawing a circle with a given center and boundary
point, and so on. These primitive steps are quite non-trivial to execute on a modern digital
computer, but this algorithm wasn’t designed for a digital computer; it was designed for the
Platonic Ideal Classical Greek Mathematician, wielding the Platonic Ideal Compass and the
Platonic Ideal Straightedge. In this example, Euclid first defines a new primitive operation,
constructing a right angle, by (as modern programmers would put it) writing a subroutine.

Multiplication by duplation and mediation

Here is an even older algorithm for multiplying large numbers, sometimes called (Russian)
peasant multiplication. A variant of this method was copied into the Rhind papyrus by the
Egyptian scribe Ahmes around 1650 BC, from a document he claimed was (then) about 350
years old. This was the most common method of calculation by Europeans before Fibonacci’s
introduction of Arabic numerals; it was still taught in elementary schools in Eastern Europe in
the late 20th century. This algorithm was also commonly used by early digital computers that did
not implement integer multiplication directly in hardware.

PEAsaNTMuLTIPLY(X, ¥): X Y P rog
prod 9 . 123| +456 = 456
s 61 +912 = 1368

if x is odd

prod < prod+y 30 1824

x — [x/2] 15 +3648 = 5016
yey+y 7 +7296 = 12312
return p 3| +14592 = 26904
1| +29184 = 56088

The peasant multiplication algorithm breaks the difficult task of general multiplication into
four simpler operations: (1) determining parity (even or odd), (2) addition, (3) duplation
(doubling a number), and (4) mediation (halving a number, rounding down).” Of course a full
specification of this algorithm requires describing how to perform those four ‘primitive’ operations.
Peasant multiplication requires (a constant factor!) more paperwork to execute by hand, but the
necessary operations are easier (for humans) to remember than the 10 x 10 multiplication table
required by the American grade school algorithm.®

The correctness of peasant multiplication follows from the following recursive identity, which
holds for any non-negative integers x and y:

0 ifx=0
x-y=1Ix/2]-(y +y) if x is even
x/2]-(y +y)+y ifxisodd

7The version of this algorithm actually used in ancient Egypt does not use mediation or parity, but it does use
comparisons. To avoid halving, the algorithm pre-computes two tables by repeated doubling: one containing all the
powers of 2 not exceeding x, the other containing the same powers of 2 multiplied by y. The powers of 2 that sum
to x are then found by greedy subtraction, and the corresponding entries in the other table are added together to
form the product.

8American school kids learn a variant of the lattice multiplication algorithm developed by Indian mathematicians
and described by Fibonacci in Liber Abaci. The two algorithms are equivalent if the input numbers are represented in
binary.

Algorithms Lecture o: Introduction [Sp’14]

Congressional Apportionment

Here is another good example of an algorithm that comes from outside the world of computing.
Article I, Section 2 of the United States Constitution requires that

Representatives and direct Taxes shall be apportioned among the several States which may
be included within this Union, according to their respective Numbers. ... The Number of
Representatives shall not exceed one for every thirty Thousand, but each State shall have at
Least one Representative. . . .

Since there are a limited number of seats available in the House of Representatives, exact
proportional representation is impossible without either shared or fractional representatives,
neither of which are legal. As a result, several different apportionment algorithms have been
proposed and used to round the fractional solution fairly. The algorithm actually used today, called
the Huntington-Hill method or the method of equal proportions, was first suggested by Census
Bureau statistician Joseph Hill in 1911, refined by Harvard mathematician Edward Huntington in
1920, adopted into Federal law (2 U.S.C. §§2a and 2b) in 1941, and survived a Supreme Court
challenge in 1992.° The input array Pop[1..n] stores the populations of the n states, and R is the
total number of representatives. Currently, n = 50 and R = 435. The output array Rep[1..n]
stores the number of representatives assigned to each state.

ArpPoRTIONCONGRESS(Pop[1..n],R):
PQ «— NEWPRIORITYQUEUE
forie—1ton

Repli] <1
INSERT (PQ, i Pop[i]/«/i)
R<—R—-1

while R> 0
s « ExTrACTMAX(PQ)
Rep[s] < Rep[s]+1
INSERT (PQ, s, Pop[s] / v/Rep[s] (Rep[s]+ 1))
R—R—-1

return Rep[1..n]

This pseudocode description assumes that you know how to implement a priority queue
that supports the operations NEWPRIORITYQUEUE, INSERT, and ExTrRacTMAX. (The actual law
doesn’t assume that, of course.) The output of the algorithm, and therefore its correctness,
does not depend at all on how the priority queue is implemented. The Census Bureau uses an
unsorted array, stored in a column of an Excel spreadsheet; you should have learned a more
efficient solution in your undergraduate data structures class.

90verruling an earlier ruling by a federal district court, the Supreme Court unanimously held that any apportionment
method adopted in good faith by Congress is constitutional (United States Department of Commerce v. Montana). The
current congressional apportionment algorithm is described in gruesome detail at the U.S. Census Department web
site http://www.census.gov/population/www/censusdata/apportionment/computing.html. A good history of the
apportionment problem can be found at http://www.thirty-thousand.org/pages/Apportionment.htm. A report by the
Congressional Research Service describing various apportionment methods is available at http://www.rules.house.
gov/archives/RL31074.pdf.

Algorithms Lecture o: Introduction [Sp’14]

A bad example

As a prototypical example of a sequence of instructions that is not actually an algorithm, consider
“Martin’s algorithm”: 10

BECOMEAMILLIONAIREANDNEVERPAYTAXES:
Get a million dollars.
If the tax man comes to the door and says, “You have never paid taxes!”
Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy. A group of billionaire CEOs might
consider this an algorithm, since for them the first step is both unambiguous and trivial, but for
the rest of us poor slobs, Martin’s procedure is too vague to be considered an actual algorithm.
On the other hand, this is a perfect example of a reduction—it reduces the problem of being a
millionaire and never paying taxes to the ‘easier’ problem of acquiring a million dollars. We’'ll see
reductions over and over again in this class. As hundreds of businessmen and politicians have
demonstrated, if you know how to solve the easier problem, a reduction tells you how to solve
the harder one.

Martin’s algorithm, like many of our previous examples, is not the kind of algorithm that
computer scientists are used to thinking about, because it is phrased in terms of operations that
are difficult for computers to perform. In this class, we’ll focus (almost!) exclusively on algorithms
that can be reasonably implemented on a standard digital computer. In other words, each step
in the algorithm must be something that either is directly supported by common programming
languages (such as arithmetic, assignments, loops, or recursion) or is something that you've
already learned how to do in an earlier class (like sorting, binary search, or depth first search).

0.3 Writing down algorithms

Computer programs are concrete representations of algorithms, but algorithms are not programs;
they should not be described in a particular programming language. The whole point of this
course is to develop computational techniques that can be used in any programming language.
The idiosyncratic syntactic details of C, C++, C#, Java, Python, Ruby, Erlang, Haskell, OcaML,
Scheme, Scala, Clojure, Visual Basic, Smalltalk, Javascript, Processing, Squeak, Forth, TgX,
Fortran, COBOL, INTERCAL, MMIX, LOLCODE, Befunge, Parseltongue, Whitespace, or Brainfuck
are of little or no importance in algorithm design, and focusing on them will only distract you
from what’s really going on.!! What we really want is closer to what you’d write in the comments
of a real program than the code itself.

On the other hand, a plain English prose description is usually not a good idea either. Algo-
rithms have lots of structure—especially conditionals, loops, and recursion—that are far too easily
hidden by unstructured prose. Natural languages like English are full of ambiguities, subtleties,

10Steve Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Also appears on Comedy Is Not
Pretty, Warner Bros. Records, 1979.

This is, of course, a matter of religious conviction. Linguists argue incessantly over the Sapir-Whorf hypothesis,
which states (more or less) that people think only in the categories imposed by their languages. According to an
extreme formulation of this principle, some concepts in one language simply cannot be understood by speakers of
other languages, not just because of technological advancement—How would you translate ‘jump the shark’ or ‘blog’
into Aramaic?—but because of inherent structural differences between languages and cultures. For a more skeptical
view, see Steven Pinker’s The Language Instinct. There is admittedly some strength to this idea when applied to
different programming paradigms. (What’s the Y combinator, again? How do templates work? What’s an Abstract
Factory?) Fortunately, those differences are generally too subtle to have much impact in this class. For a compelling
counterexample, see Chris Okasaki’s thesis/monograph Functional Data Structures and its more recent descendants.

Algorithms Lecture o: Introduction [Sp’14]

and shades of meaning, but algorithms must be described as precisely and unambiguously as
possible. Finally and more seriously, in non-technical writing, there is natural tendency to
describe repeated operations informally: “Do this first, then do this second, and so on.” But as
anyone who has taken one of those ‘What comes next in this sequence?’ tests already knows,
specifying what happens in the first few iterations of a loop says very little, of anything, about
what happens later iterations. To make the description unambiguous, we must explicitly specify
the behavior of every iteration. The stupid joke about the programmer dying in the shower has a
grain of truth—*“Lather, rinse, repeat” is ambiguous; what exactly do we repeat, and until when?

In my opinion, the clearest way to present an algorithm is using pseudocode. Pseudocode
uses the structure of formal programming languages and mathematics to break algorithms into
primitive steps; but the primitive steps themselves may be written using mathematics, pure
English, or an appropriate mixture of the two. Well-written pseudocode reveals the internal
structure of the algorithm but hides irrelevant implementation details, making the algorithm
much easier to understand, analyze, debug, and implement.

The precise syntax of pseudocode is a personal choice, but the overriding goal should be
clarity and precision. Ideally, pseudocode should allow any competent programmer to implement
the underlying algorithm, quickly and correctly, in their favorite programming language, without
understanding why the algorithm works. Here are the guidelines I follow and strongly recommend:

¢ Be consistent!

* Use standard imperative programming keywords (if/then/else, while, for, repeat/until,
case, return) and notation (variable < value, Array[index], function(argument), bigger >
smaller, etc.). Keywords should be standard English words: write ‘else if’” instead of ‘elif’.

* Indent everything carefully and consistently; the block structure should be visible from
across the room. This rule is especially important for nested loops and conditionals. Don’t
add unnecessary syntactic sugar like braces or begin/end tags; careful indentation is almost
always enough.

* Use mnemonic algorithm and variable names. Short variable names are good, but readability
is more important than concision; except for idioms like loop indices, short but complete
words are better than single letters. Absolutely never use pronouns!

* Use standard mathematical notation for standard mathematical things. For example, write
x -y instead of x * y for multiplication; write x mod y instead of x % y for remainder; write
V/x instead of sqrt(x) for square roots; write a® instead of power(a, b) for exponentiation;
and write ¢ instead of phi for the golden ratio.

* Avoid mathematical notation if English is clearer. For example, ‘Insert a into X’ may be
preferable to INSERT(X,a) or X « X U {a}.

* Each statement should fit on one line, and each line should contain either exactly one
statement or exactly one structuring element (for, while, if). (I sometimes make an
exception for short and similar statements likei «<—i+1; j« j—1; k< 0.)

* Don’t use a fixed-width typeface to typeset pseudocode; it’s much harder to read than
normal typeset text. Similarly, don’t typeset keywords like ‘for’ or ‘while’ in a different
style; the syntactic sugar is not what you want the reader to look at. On the other hand, I
do use italics for variables (following the standard mathematical typesetting convention),
SmaLL Caps for algorithms and constants, and a different typeface for literal strings.

Algorithms Lecture o: Introduction [Sp’14]

0.4 Analyzing algorithms

It’s not enough just to write down an algorithm and say ‘Behold!” We must also convince our
audience (and ourselves!) that the algorithm actually does what it’s supposed to do, and that it
does so efficiently.

Correctness

In some application settings, it is acceptable for programs to behave correctly most of the time,
on all ‘reasonable’ inputs. Not in this class; we require algorithms that are correct for all possible
inputs. Moreover, we must prove that our algorithms are correct; trusting our instincts, or trying
a few test cases, isn’t good enough. Sometimes correctness is fairly obvious, especially for
algorithms you've seen in earlier courses. On the other hand, ‘obvious’ is all too often a synonym
for ‘wrong’. Many of the algorithms we will discuss in this course will require extra work to prove
correct. Correctness proofs almost always involve induction. We like induction. Induction is our
friend.12

But before we can formally prove that our algorithm does what it’s supposed to do, we have
to formally state what it’s supposed to do! Algorithmic problems are usually presented using
standard English, in terms of real-world objects, not in terms of formal mathematical objects. It’s
up to us, the algorithm designers, to restate these problems in terms of mathematical objects
that we can prove things about—numbers, arrays, lists, graphs, trees, and so on. We must also
determine if the problem statement carries any hidden assumptions, and state those assumptions
explicitly. (For example, in the song “n Bottles of Beer on the Wall”, n is always a positive integer.)
Restating the problem formally is not only required for proofs; it is also one of the best ways to
really understand what a problem is asking for. The hardest part of answering any question is
figuring out the right way to ask it!

It is important to remember the distinction between a problem and an algorithm. A problem
is a task to perform, like “Compute the square root of x” or “Sort these n numbers” or “Keep n
algorithms students awake for t minutes”. An algorithm is a set of instructions for accomplishing
such a task. The same problem may have hundreds of different algorithms; the same algorithm
may solve hundreds of different problems.

Running time

The most common way of ranking different algorithms for the same problem is by how quickly
they run. Ideally, we want the fastest possible algorithm for any particular problem. In many
application settings, it is acceptable for programs to run efficiently most of the time, on all
‘reasonable’ inputs. Not in this class; we require algorithms that always run efficiently, even in
the worst case.

But how do we measure running time? As a specific example, how long does it take to
sing the song BoTTLESOFBEER(n)? This is obviously a function of the input value n, but it also
depends on how quickly you can sing. Some singers might take ten seconds to sing a verse;
others might take twenty. Technology widens the possibilities even further. Dictating the song
over a telegraph using Morse code might take a full minute per verse. Downloading an mp3 over
the Web might take a tenth of a second per verse. Duplicating the mp3 in a computer’s main
memory might take only a few microseconds per verse.

121f induction is not your friend, you will have a hard time in this course.

Algorithms Lecture o: Introduction [Sp’14]

What’s important here is how the singing time changes as n grows. Singing BOTTLESOF-
BEER(2n) takes about twice as long as singing BoTTLESOFBEER(n), no matter what technology
is being used. This is reflected in the asymptotic singing time ©(n). We can measure time
by counting how many times the algorithm executes a certain instruction or reaches a certain
milestone in the ‘code’. For example, we might notice that the word ‘beer’ is sung three times in
every verse of BOTTLESOFBEER, so the number of times you sing ‘beer’ is a good indication of the
total singing time. For this question, we can give an exact answer: BOTTLESOFBEER(n) uses
exactly 3n + 3 beers.

There are plenty of other songs that have non-trivial singing time. This one is probably
familiar to most English-speakers:

NDavysOrCHRisTMAS(gifts[2..n]):
forie—1ton
Sing “On the ith day of Christmas, my true love gave to me”
for j « i down to 2
Sing “ gifts[j]”
ifi>1
Sing “and”
Sing “a partridge in a pear tree.”

The input to NDaysOFCHRISTMAS is a list of n — 1 gifts. It’s quite easy to show that the
singing time is ©(n?); in particular, the singer mentions the name of a gift Z?:l i=n(n+1)/2
times (counting the partridge in the pear tree). It’s also easy to see that during the first n days of
Christmas, my true love gave to me exactly >\, Z;:lj =n(n+1)(n+2)/6 = ©(n®) gifts.

There are many other traditional songs that take quadratic time to sing; examples include
“Old MacDonald Had a Farm”, “There Was an Old Lady Who Swallowed a Fly”, “The House that
Jack Built”, “Hole in the Bottom of the Sea”, “Green Grow the Rushes O”, “The Rattlin’ Bog”, “The
Barley-Mow”, “Eh, Cumpari!”, “Alouette”, “Echad Mi Yode’a”, “Ist das nicht ein Schnitzelbank?”,
and “Minkurinn { heensnakofanum”. For further details, consult your nearest preschooler.

OLpMacDonNaLDp(animals[1..n], noise[1..n]):
fori—1ton
Sing “Old MacDonald had a farm, EI1 E | O”
Sing “And on this farm he had some animals[i], EI E1O”
Sing “With a noise[i] noise[i] here, and a noise[i] noise[i] there”
Sing “Here a noise[i], there a noise[i], everywhere a noise[i] noise[i]”
for j«—i—1downto 1
Sing “noise[j] noise[j] here, noise[j] noise[j] there”
Sing “Here a noise[j], there a noise[j], everywhere a noise[j] noise[j]
Sing “Old MacDonald had a farm, EI E10O.”

”

AvoueTrTE(lapart[1..n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerais. »
pourtoutidel an
Chantez « Je te plumerais lapart[i]. Je te plumerais lapart[i]. »
pour tout jdei—1dabasal
Chantez « Et lapart[j]! Et lapart[j]! »
Chantez « Ooo0000! »
Chantez « Alouette, gentille alluette, alouette, je te plumerais. »

A more modern example of the parametrized cumulative song is “The TELNET Song” by Guy
Steele, which takes O(2") time to sing; Steele recommended n = 4.

Algorithms Lecture o: Introduction [Sp’14]

For a slightly less facetious example, consider the algorithm APPORTIONCONGRESS. Here the
running time obviously depends on the implementation of the priority queue operations, but we
can certainly bound the running time as O(N + RI + (R—n)E), where N denotes the running
time of NEWPRIORITYQUEUE, I denotes the running time of INSERT, and E denotes the running
time of ExTRACTMAX. Under the reasonable assumption that R > 2n (on average, each state
gets at least two representatives), we can simplify the bound to O(N + R(I + E)). The Census
Bureau implements the priority queue using an unsorted array of size n; this implementation
givesus N =1 = 0(1) and E = ©(n), so the overall running time is O(Rn). This is good enough
for government work, but we can do better. Implementing the priority queue using a binary heap
(or a heap-ordered array) gives us N = ©(1) and I = R = O(logn), which implies an overall
running time of O(Rlogn).

Sometimes we are also interested in other computational resources: space, randomness, page
faults, inter-process messages, and so forth. We can use the same techniques to analyze those
resources as we use to analyze running time.

0.5 A Longer Example: Stable Matching

Every year, thousands of new doctors must obtain internships at hospitals around the United
States. During the first half of the 20th century, competition among hospitals for the best doctors
led to earlier and earlier offers of internships, sometimes as early as the second year of medical
school, along with tighter deadlines for acceptance. In the 1940s, medical schools agreed not to
release information until a common date during their students’ fourth year. In response, hospitals
began demanding faster decisions. By 1950, hospitals would regularly call doctors, offer them
internships, and demand immediate responses. Interns were forced to gamble if their third-choice
hospital called first—accept and risk losing a better opportunity later, or reject and risk having
no position at all.’?

Finally, a central clearinghouse for internship assignments, now called the National Resident
Matching Program, was established in the early 1950s. Each year, doctors submit a ranked list of
all hospitals where they would accept an internship, and each hospital submits a ranked list of
doctors they would accept as interns. The NRMP then computes an assignment of interns to
hospitals that satisfies the following stability requirement. For simplicity, let’s assume that there
are n doctors and n hospitals; each hospital offers exactly one internship; each doctor ranks all
hospitals and vice versa; and finally, there are no ties in the doctors’ and hospitals’ rankings.'*
We say that a matching of doctors to hospitals is unstable if there are two doctors a and 3 and
two hospitals A and B, such that

* qis assigned to A, and f3 is assigned to B;

* a prefers B to A, and B prefers a to f3.

In other words, a and B would both be happier with each other than with their current assignment.
The goal of the Resident Match is a stable matching, in which no doctor or hospital has an
incentive to cheat the system. At first glance, it is not clear that a stable matching exists!

In 1952, the NRMP adopted the “Boston Pool” algorithm to assign interns, so named because
it had been previously used by a regional clearinghouse in the Boston area. The algorithm is

13The academic job market involves similar gambles, at least in computer science. Some departments start making
offers in February with two-week decision deadlines; other departments don’t even start interviewing until late March;
MIT notoriously waits until May, when all its interviews are over, before making any faculty offers.

141n reality, most hospitals offer multiple internships, each doctor ranks only a subset of the hospitals and vice versa,
and there are typically more internships than interested doctors. And then it starts getting complicated.

Algorithms Lecture o: Introduction [Sp’14]

often misattributed to David Gale and Lloyd Shapley, who formally analyzed the algorithm and
first proved that it computes a stable matching in 1962; Gale and Shapley used the metaphor of
college admissions.'> Similar algorithms have since been adopted for other matching markets,
including faculty recruiting in France, university admission in Germany, public school admission
in New York and Boston, billet assignments for US Navy sailors, and kidney-matching programs.
Shapley was awarded the 2012 Nobel Prize in Economics for his research on stable matching,
together with Alvin Roth, who significantly extended Shapley’s work and used it to develop
several real-world exchanges.

The Boston Pool algorithm proceeds in rounds until every position has been filled. Each
round has two stages:

1. An arbitrary unassigned hospital A offers its position to the best doctor a (according to the
hospital’s preference list) who has not already rejected it.

2. Each doctor ultimately accepts the best offer that she receives, according to her preference
list. Thus, if a is currently unassigned, she (tentatively) accepts the offer from A. If a
already has an assignment but prefers A, she rejects her existing assignment and (tentatively)
accepts the new offer from A. Otherwise, a rejects the new offer.

For example, suppose four doctors (Dr. Quincy, Dr. Rotwang, Dr. Shephard, and Dr. Tam,
represented by lower-case letters) and four hospitals (Arkham Asylum, Bethlem Royal Hospital,
County General Hospital, and The Dharma Initiative, represented by upper-case letters) rank
each other as follows:

q r s t A B C D
A A B D t r t s
B D A B s t r r
Cc € C C r q s (¢
D B D A q s q t

Given these preferences as input, the Boston Pool algorithm might proceed as follows:

1. Arkham makes an offer to Dr. Tam.
2. Bedlam makes an offer to Dr. Rotwang.

3. County makes an offer to Dr. Tam, who rejects her earlier offer from Arkham.

+

Dharma makes an offer to Dr. Shephard. (From this point on, because there is only one
unmatched hospital, the algorithm has no more choices.)

. Arkham makes an offer to Dr. Shephard, who rejects her earlier offer from Dharma.

5
6. Dharma makes an offer to Dr. Rotwang, who rejects her earlier offer from Bedlam.
7. Bedlam makes an offer to Dr. Tam, who rejects her earlier offer from County.

8

. County makes an offer to Dr. Rotwang, who rejects it.

15The “Gale-Shapley algorithm” is a prime instance of Stigler’s Law of Eponymy: No scientific discovery is named
after its original discoverer. In his 1980 paper that gives the law its name, the statistician Stephen Stigler claimed that
this law was first proposed by sociologist Robert K. Merton. However, similar statements were previously made by
Vladimir Arnol’d in the 1970’s (“Discoveries are rarely attributed to the correct person.”), Carl Boyer in 1968 (“Clio,
the muse of history, often is fickle in attaching names to theorems!”), Alfred North Whitehead in 1917 (“Everything of
importance has been said before by someone who did not discover it.”), and even Stephen’s father George Stigler in
1966 (“If we should ever encounter a case where a theory is named for the correct man, it will be noted.”). We will
see many other examples of Stigler’s law in this class.

10

Algorithms Lecture o: Introduction [Sp’14]

9. County makes an offer to Dr. Shephard, who rejects it.

10. County makes an offer to Dr. Quincy.

At this point, all pending offers are accepted, and the algorithm terminates with a matching:
(A,s), (B, t),(C,q), (D, r). You can (and should) verify by brute force that this matching is stable,
even though no doctor was hired by her favorite hospital, and no hospital hired its favorite doctor;
in fact, County was forced to hire their least favorite doctor. This is not the only stable matching
for this list of preferences; the matching (A, r), (B,s),(C,q), (D, t) is also stable.

Running Time

Analyzing the algorithm’s running time is relatively straightforward. Each hospital makes an
offer to each doctor at most once, so the algorithm requires at most n? rounds. In an actual
implementation, each doctor and hospital can be identified by a unique integer between 1
and n, and the preference lists can be represented as two arrays DocPref[1..n][1..n] and
HosPref[1..n][1..n], where DocPref[a][r] represents the rth hospital in doctor a’s preference
list, and HosPref[A][r] represents the rth doctor in hospital A’s preference list. With the input in
this form, the Boston Pool algorithm can be implemented to run in O(n2) time; we leave the
details as an easy exercise.

A somewhat harder exercise is to prove that there are inputs (and choices of who makes
offers when) that force 2(n?) rounds before the algorithm terminates. Thus, the O(n?) upper
bound on the worst-case running time cannot be improved; in this case, we say our analysis is
tight.

Correctness

But why is the algorithm correct? How do we know that the Boston Pool algorithm always
computes a stable matching? Gale and Shapley proved correctness as follows. The algorithm
continues as long as there is at least one unfilled position; conversely, when the algorithm
terminates (after at most n? rounds), every position is filled. No doctor can accept more than one
position, and no hospital can hire more than one doctor. Thus, the algorithm always computes a
matching; it remains only to prove that the matching is stable.

Suppose doctor «a is assigned to hospital A in the final matching, but prefers B. Because every
doctor accepts the best offer she receives, a received no offer she liked more than A. In particular,
B never made an offer to a. On the other hand, B made offers to every doctor they like more
than 3. Thus, B prefers 3 to a, and so there is no instability.

Surprisingly, the correctness of the algorithm does not depend on which hospital makes
its offer in which round. In fact, there is a stronger sense in which the order of offers doesn’t
matter—no matter which unassigned hospital makes an offer in each round, the algorithm always
computes the same matching! Let’s say that a is a feasible doctor for A if there is a stable matching
that assigns doctor a to hospital A.

Lemma o.1. During the Boston Pool algorithm, each hospital A is rejected only by doctors that are
infeasible for A.

Proof: We prove the lemma by induction. Consider an arbitrary round of the Boston Pool
algorithm, in which doctor a rejects one hospital A for another hospital B. The rejection implies
that a prefers B to A. Every doctor that appears higher than a in B’s preference list has already
rejected B and therefore, by the inductive hypothesis, is infeasible for B.

11

Algorithms Lecture o: Introduction [Sp’14]

Now consider an arbitrary matching that assigns a to A. We already established that a prefers
B to A. If B prefers a to its partner, the matching is unstable. On the other hand, if B prefers its
partner to a, then (by our earlier argument) its partner is infeasible, and again the matching is
unstable. We conclude that there is no stable matching that assigns a to A. |

Now let best(A) denote the highest-ranked feasible doctor on A’s preference list. Lemma 0.1
implies that every doctor that A prefers to its final assignment is infeasible for A. On the other
hand, the final matching is stable, so the doctor assigned to A is feasible for A. The following
result is now immediate:

Corollary o0.2. The Boston Pool algorithm assigns best(A) to A, for every hospital A.

Thus, from the hospitals’ point of view, the Boston Pool algorithm computes the best possible
stable matching. It turns out that this matching is also the worst possible from the doctors’
viewpoint! Let worst(a) denote the lowest-ranked feasible hospital on doctor a’s preference list.

Corollary 0.3. The Boston Pool algorithm assigns a to worst(a), for every doctor a.

Proof: Suppose the Boston Pool algorithm assigns doctor a to hospital A; we need to show that
A = worst(a). Consider an arbitrary stable matching where A is not matched with a but with
another doctor . The previous corollary implies that A prefers a = best(A) to 3. Because the
matching is stable, a must therefore prefer her assigned hopital to A. This argument works for any
stable assignment, so a prefers every other feasible match to A; in other words, A = worst(a). O

A subtle consequence of these two corollaries, discovered by Dubins and Freeman in 1981,
is that a doctor can potentially improve her assignment by lying about her preferences, but
a hospital cannot. (However, a set of hospitals can collude so that some of their assignments
improve.) Partly for this reason, the National Residency Matching Program reversed its matching
algorithm in 1998, so that potential residents offer to work for hospitals in preference order, and
each hospital accepts its best offer. Thus, the new algorithm computes the best possible stable
matching for the doctors, and the worst possible stable matching for the hospitals. In practice,
however, this modification affected less than 1% of the resident’s assignments. As far as I know,
the precise effect of this change on the patients is an open problem.

0.6 Why are we here, anyway?

This class is ultimately about learning two skills that are crucial for all computer scientists.
1. Intuition: How to think about abstract computation.
2. Language: How to talk about abstract computation.

The first goal of this course is to help you develop algorithmic intuition. How do various
algorithms really work? When you see a problem for the first time, how should you attack it?
How do you tell which techniques will work at all, and which ones will work best? How do you
judge whether one algorithm is better than another? How do you tell whether you have the best
possible solution? These are not easy questions; anyone who says differently is selling something.

Our second main goal is to help you develop algorithmic language. It’s not enough just to
understand how to solve a problem; you also have to be able to explain your solution to somebody
else. I don’t mean just how to turn your algorithms into working code—despite what many

12

Algorithms Lecture o: Introduction [Sp’14]

students (and inexperienced programmers) think, ‘somebody else’ is not just a computer. Nobody
programs alone. Code is read far more often than it is written, or even compiled. Perhaps more
importantly in the short term, explaining something to somebody else is one of the best ways to
clarify your own understanding. As Albert Einstein (or was it Richard Feynman?) apocryphally
put it, “You do not really understand something unless you can explain it to your grandmother.”

Along the way, you’ll pick up a bunch of algorithmic facts—mergesort runs in ©(nlogn) time;
the amortized time to search in a splay tree is O(logn); greedy algorithms usually don’t produce
optimal solutions; the traveling salesman problem is NP-hard—but these aren’t the point of the
course. You can always look up mere facts in a textbook or on the web, provided you have
enough intuition and experience to know what to look for. That’s why we let you bring cheat
sheets to the exams; we don’t want you wasting your study time trying to memorize all the facts
you've seen.

You'll also practice a lot of algorithm design and analysis skills—finding useful examples
and counterexamples, developing induction proofs, solving recurrences, using big-Oh notation,
using probability, giving problems crisp mathematical descriptions, and so on. These skills are
incredibly useful, and it’s impossible to develop good intuition and good communication skills
without them, but they aren’t the main point of the course either. At this point in your educational
career, you should be able to pick up most of those skills on your own, once you know what you're
trying to do.

Unfortunately, there is no systematic procedure—no algorithm—to determine which algorith-
mic techniques are most effective at solving a given problem, or finding good ways to explain,
analyze, optimize, or implement a given algorithm. Like many other activities (music, writing,
juggling, acting, martial arts, sports, cooking, programming, teaching, etc.), the only way to
master these skills is to make them your own, through practice, practice, and more practice. You
can only develop good problem-solving skills by solving problems. You can only develop good
communication skills by communicating. Good intuition is the product of experience, not its
replacement. We can’t teach you how to do well in this class. All we can do (and what we will
do) is lay out some fundamental tools, show you how to use them, create opportunities for you
to practice with them, and give you honest feedback, based on our own hard-won experience and
intuition. The rest is up to you.

Good algorithms are extremely useful, elegant, surprising, deep, even beautiful, but most
importantly, algorithms are fun! I hope you will enjoy playing with them as much as I do.

13

Lecture o: Introduction [Sp’14]

Algorithms

Boethius the algorist versus Pythagoras the abacist.
from Margarita Philosophica by Gregor Reisch (1503)

14

Algorithms

Lecture o: Introduction [Sp’14]

Exercises

0. Describe and analyze an efficient algorithm that determines, given a legal arrangement of
standard pieces on a standard chess board, which player will win at chess from the given
starting position if both players play perfectly. [Hint: There is a trivial one-line solution!]

1. “The Barley Mow” is a cumulative drinking song which has been sung throughout the
British Isles for centuries. (An early version entitled “Giue vs once a drinke” appears
in Thomas Ravenscroft’s song collection Deuteromelia, which was published in 1609, but
the song is almost certainly much older.) The song has many variants, but one version
traditionally sung in Devon and Cornwall has the following pseudolyrics, where vessel[i] is
the name of a vessel that holds 2! ounces of beer. The traditional song uses the following
vessels: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-anker, anker, firkin,
half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every vessel in this list is twice
as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units
are just silly.)

@

(b)

(o)

BARLEYMow(n):

“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”

“Here’s a health to the barley-mow!”

“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

forie—1ton
“We’ll drink it out of the vessel[i], boys,”
“Here’s a health to the barley-mow!”
for j « i downto 1
“The vessel[j],”
“And the jolly brown bowl!!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

Suppose each name vessel[i] is a single word, and you can sing four words a second.
How long would it take you to sing BARLEYMow(n)? (Give a tight asymptotic bound.)

If you want to sing this song for arbitrarily large values of n, you’ll have to make up
your own vessel names. To avoid repetition, these names must become progressively
longer as n increases. (“We’ll drink it out of the hemisemidemiyottapint, boys!”)
Suppose vessel[n] has ©(logn) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BARLEYMow(n)? (Give a tight asymptotic
bound.)

Suppose each time you mention the name of a vessel, you actually drink the corre-
sponding amount of beer: one ounce for the jolly brown bowl, and 2! ounces for each
vessel[i]. Assuming for purposes of this problem that you are at least 21 years old,
exactly how many ounces of beer would you drink if you sang BARLEYMow(n)? (Give
an exact answer, not just an asymptotic bound.)

15

Algorithms Lecture o: Introduction [Sp’14]

2. Describe and analyze the Boston Pool stable matching algorithm in more detail, so that the
worst-case running time is O(n?), as claimed earlier in the notes.

3. Prove that it is possible for the Boston Pool algorithm to execute Q(n?) rounds. (You need
to describe both a suitable input and a sequence of Q(n?) valid proposals.)

4. Describe and analyze an efficient algorithm to determine whether a given set of hospital
and doctor preferences has to a unique stable matching.

5. Consider a generalization of the stable matching problem, where some doctors do not rank
all hospitals and some hospitals do not rank all doctors, and a doctor can be assigned to
a hospital only if each appears in the other’s preference list. In this case, there are three
additional unstable situations:

* A hospital prefers an unmatched doctor to its assigned match.
* A doctor prefers an unmatched hospital to her assigned match.

* An unmatched doctor and an unmatched hospital appear in each other’s preference
lists.

Describe and analyze an efficient algorithm that computes a stable matching in this setting.

Note that a stable matching may leave some doctors and hospitals unmatched, even
though their preference lists are non-empty. For example, if every doctor lists Harvard as
their only acceptable hospital, and every hospital lists Dr. House as their only acceptable
intern, then only House and Harvard will be matched.

6. Recall that the input to the Huntington-Hill apportionment algorithm APPORTIONCONGRESS
is an array P[1..n], where P[i] is the population of the ith state, and an integer R, the
total number of representatives to be allotted. The output is an array r[1..n], where r[i]
is the number of representatives allotted to the ith state by the algorithm.

LetP = 2?21 P[i] denote the total population of the country, and let r} =R - P[i]/P
denote the ideal number of representatives for the ith state.

(a) Prove that r[i] > [r}] for all i.

(b) Describe and analyze an algorithm that computes exactly the same congressional
apportionment as APPORTIONCONGRESS in O(nlogn) time. (Recall that the running
time of ApPORTIONCONGRESS depends on R, which could be arbitrarily larger than
n.)

*(c) If a state’s population is small relative to the other states, its ideal number r of
representatives could be close to zero; thus, tiny states are over-represented by the
Huntington-Hill apportionment process. Surprisingly, this can also be true of very
large states. Let a = (1++/2)/2 ~ 1.20710678119. Prove that for any € > 0, there is
an input to APPORTIONCONGRESs with max; P[i] = P[1], such that r[1] > (a —¢) 1.

*(d) Can you improve the constant « in the previous question?

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

16

Recursion

Recursion

uoISINIRY

Uo1SINIY

uos.mozy

Recursion

ooy

Recursion

Recursion

d

Uuo1sUMNnI9

uos.moay

UO1SINIFY

Algorithms Lecture 1: Recursion [Fa’14]

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

Our life is frittered away by detail. ... Simplify, simplify.
— Henry David Thoreau, Walden (1854)

Nothing is particularly hard if you divide it into small jobs.
— Henry Ford

Do the hard jobs first. The easy jobs will take care of themselves.
— Dale Carnegie

1 Recursion

1.1 Reductions

Reduction is the single most common technique used in designing algorithms. Reducing one
problem X to another problem Y means to write an algorithm for X that uses an algorithm for Y
as a black box or subroutine. Crucially, the correctness of the resulting algorithm cannot depend
in any way on how the algorithm for Y works. The only thing we can assume is that the black
box solves Y correctly. The inner workings of the black box are simply none of our business;
they’re somebody else’s problem. It’s often best to literally think of the black box as functioning
by magic.

For example, the Huntington-Hill algorithm described in Lecture o reduces the problem
of apportioning Congress to the problem of maintaining a priority queue that supports the
operations INSERT and ExTRACTMAx. The abstract data type “priority queue” is a black box; the
correctness of the apportionment algorithm does not depend on any specific priority queue data
structure. Of course, the running time of the apportionment algorithm depends on the running
time of the INSERT and EXTRACTMAX algorithms, but that’s a separate issue from the correctness of
the algorithm. The beauty of the reduction is that we can create a more efficient apportionment
algorithm by simply swapping in a new priority queue data structure. Moreover, the designer of
that data structure does not need to know or care that it will be used to apportion Congress.

Similarly, if we want to design an algorithm to compute the smallest deterministic finite-state
machine equivalent to a given regular expression, we don’t have to start from scratch. Instead
we can reduce the problem to three subproblems for which algorithms can be found in earlier
lecture notes: (1) build an NFA from the regular expression, using either Thompson’s algorithm
or Glushkov’s algorithm; (2) transform the NFA into an equivalent DFA, using the (incremental)
subset construction; and (3) transform the DFA into the smallest equivalent DFA, using Moore’s
algorithm, for example. Even if your class skipped over the automata notes, merely knowing that
those component algorithms exist (Trust me!) allows you to combine them into more complex
algorithms; you don’t need to know the details. (But you should, because they’re totally cool.
Trust me!) Again swapping in a more efficient algorithm for any of those three subproblems
automatically yields a more efficient algorithm for the problem as a whole.

When we design algorithms, we may not know exactly how the basic building blocks we use
are implemented, or how our algorithms might be used as building blocks to solve even bigger
problems. Even when you do know precisely how your components work, it is often extremely
useful to pretend that you don’t. (Trust yourself!)

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 1: Recursion [Fa’14]

1.2 Simplify and Delegate

Recursion is a particularly powerful kind of reduction, which can be described loosely as follows:
* If the given instance of the problem is small or simple enough, just solve it.
* Otherwise, reduce the problem to one or more simpler instances of the same problem.

If the self-reference is confusing, it’s helpful to imagine that someone else is going to solve
the simpler problems, just as you would assume for other types of reductions. I like to call
that someone else the Recursion Fairy. Your only task is to simplify the original problem, or to
solve it directly when simplification is either unnecessary or impossible; the Recursion Fairy will
magically take care of all the simpler subproblems for you, using Methods That Are None Of Your
Business So Butt Out.! Mathematically sophisticated readers might recognize the Recursion Fairy
by its more formal name, the Induction Hypothesis.

There is one mild technical condition that must be satisfied in order for any recursive method
to work correctly: There must be no infinite sequence of reductions to ‘simpler’ and ‘simpler’
subproblems. Eventually, the recursive reductions must stop with an elementary base case that
can be solved by some other method; otherwise, the recursive algorithm will loop forever. This
finiteness condition is almost always satisfied trivially, but we should always be wary of “obvious”
recursive algorithms that actually recurse forever. (All too often, “obvious” is a synonym for
“false”.)

1.3 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the mathematician Francois Eduoard Anatole
Lucas in 1883, under the pseudonym “N. Claus (de Siam)” (an anagram of “Lucas d’Amiens”).
The following year, Henri de Parville described the puzzle with the following remarkable story:2

In the great temple at Benares beneath the dome which marks the centre of the world, rests a brass
plate in which are fixed three diamond needles, each a cubit high and as thick as the body of a bee.
On one of these needles, at the creation, God placed sixty-four discs of pure gold, the largest disc
resting on the brass plate, and the others getting smaller and smaller up to the top one. This is the
Tower of Bramah. Day and night unceasingly the priests transfer the discs from one diamond needle
to another according to the fixed and immutable laws of Bramah, which require that the priest on
duty must not move more than one disc at a time and that he must place this disc on a needle so that
there is no smaller disc below it. When the sixty-four discs shall have been thus transferred from the
needle on which at the creation God placed them to one of the other needles, tower, temple, and
Brahmins alike will crumble into dust, and with a thunderclap the world will vanish.

Of course, as good computer scientists, our first instinct on reading this story is to substitute the
variable n for the hardwired constant 64. And following standard practice (since most physical
instances of the puzzle are made of wood instead of diamonds and gold), we will refer to the
three possible locations for the disks as “pegs” instead of “needles”. How can we move a tower
of n disks from one peg to another, using a third peg as an occasional placeholder, without ever
placing a disk on top of a smaller disk?

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire
puzzle all at once, let’s concentrate on moving just the largest disk. We can’t move it at the

When I was a student, I used to attribute recursion to “elves” instead of the Recursion Fairy, referring to the
Brothers Grimm story about an old shoemaker who leaves his work unfinished when he goes to bed, only to discover
upon waking that elves (“Wichtelménner”) have finished everything overnight. Someone more entheogenically
experienced than I might recognize them as Terence McKenna’s “self-transforming machine elves”.

2This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.

Algorithms Lecture 1: Recursion [Fa’14]

\ 4

The Tower of Hanoi puzzle

beginning, because all the other disks are covering it; we have to move those n —1 disks to the
third peg before we can move the nth disk. And then after we move the nth disk, we have to
move those n— 1 disks back on top of it. So now all we have to figure out is how to. ..

STOP!! | That's it! We're done! We've successfully reduced the n-disk Tower of Hanoi
problem to two instances of the (n — 1)-disk Tower of Hanoi problem, which we can gleefully
hand off to the Recursion Fairy (or, to carry the original story further, to the junior monks at the
temple).

@}

- 1

L oo
r =N

The Tower of Hanoi algorithm; ignore everything but the bottom disk

2V

Our recursive reduction does make one subtle but important assumption: There is a largest
disk. In other words, our recursive algorithm works for any n > 1, but it breaks down when
n = 0. We must handle that base case directly. Fortunately, the monks at Benares, being good
Buddhists, are quite adept at moving zero disks from one peg to another in no time at all.

The base case for the Tower of Hanoi algorithm. There is no spoon.

While it’s tempting to think about how all those smaller disks get moved—or more generally,
what happens when the recursion is unrolled—it’s not necessary. For even slightly more
complicated algorithms, unrolling the recursion is far more confusing than illuminating. Our
only task is to reduce the problem to one or more simpler instances, or to solve the problem
directly if such a reduction is impossible. Our algorithm is trivially correct when n = 0. For any
n > 1, the Recursion Fairy correctly moves (or more formally, the inductive hypothesis implies

Algorithms Lecture 1: Recursion [Fa’14]

that our recursive algorithm correctly moves) the top n—1 disks, so (by induction) our algorithm
must be correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode. This algorithm moves a
stack of n disks from a source peg (src) to a destination peg (dst) using a third temporary peg
(tmp) as a placeholder.

Hanoi(n, src, dst, tmp):
ifn>0
Hanoi(n — 1, src, tmp, dst)
move disk n from src to dst
Hanoi(n — 1, tmp, dst, src)

Let T(n) denote the number of moves required to transfer n disks—the running time of
our algorithm. Our vacuous base case implies that T(0) = 0, and the more general recursive
algorithm implies that T(n) = 2T(n—1)+ 1 for any n > 1. The annihilator method (or guessing
and checking by induction) quickly gives us the closed form solution T(n) = 2" — 1. In particular,
moving a tower of 64 disks requires 204 _1 = 18,446,744,073,709,551,615 individual moves. Thus,
even at the impressive rate of one move per second, the monks at Benares will be at work for
approximately 585 billion years before tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

1.4 Mergesort

Mergesort is one of the earliest algorithms proposed for sorting. According to Donald Knuth, it
was proposed by John von Neumann as early as 1945.

1. Divide the input array into two subarrays of roughly equal size.

2. Recursively mergesort each of the subarrays.

3. Merge the newly-sorted subarrays into a single sorted array.

Input: S 0 R T I N G E X A M P L
Dividee S 0 R T I N|G E X A M P L
Recurse:. I N 0 S R T|A E G L M P X
Merge: A E G I L M N O P R S T X

A mergesort example.

The first step is completely trivial—we only need to compute the median array index—and
we can delegate the second step to the Recursion Fairy. All the real work is done in the final step;
the two sorted subarrays can be merged using a simple linear-time algorithm. Here’s a complete
description of the algorithm; to keep the recursive structure clear, we separate out the merge
step as an independent subroutine.

Algorithms Lecture 1: Recursion [Fa’14]

MEeRGE(A[1..n],m):
i—1; jeem+1
fork<—1ton

ifj>n
MERGESORT(A[1..n]): Blk]—A[i]; i —i+1
ifn>1 else ifi > m
m —|n/2] BIk] ~A[j]; je—j+1
MERGESORT(A[1..m]) else if A[i] < A[}]
MERGESORT(A[m +1..n]) B[k] —A[i]; i —i+1
MERGE(A[1..n],m) else

B[k] —AjL; j e j+1

fork—1ton
Alk] « B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
MERGE subroutine then to the top-level MERGESORT algorithm.

* We prove MERGE is correct by induction on n — k + 1, which is the total size of the two
sorted subarrays A[i..m] and A[j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

— If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

— If i < m and j > n, the subarray A[j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k] < A[i] is correct. The inductive hypothesis implies that the remaining subarrays
Ali+1..m] and A[j..n] are correctly merged into B[k + 1..n].

— Similarly, if i > m and j < n, the assignment B[k] « A[j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the MERGE algorithm correctly merges—the remaining subarrays A[i..m] and
A[j+1..n]into B[k+1..n].

- Ifi<mand j<nandA[i] <A[j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

— Finally, if i <m and j < n and A[i] > A[j], then the smallest remaining element is
A[j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

* Now we prove MERGESORT correct by induction; there are two cases to consider. Yes, two.

- If n <1, the algorithm correctly does nothing.

— Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis
implies that our algorithm correctly sorts—the two smaller subarrays A[1..m] and
A[m+ 1..n], after which they are correctly MERGEd into a single sorted array (by the
previous argument).

What’s the running time? Because the MERGESORT algorithm is recursive, its running
time will be expressed by a recurrence. MERGE clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
MERGESORT:

T(n) = T([n/21) + T(Ln/2]) + O(n).

Algorithms Lecture 1: Recursion [Fa’14]

As in most divide-and-conquer recurrences, we can safely strip out the floors and ceilings using a
domain transformation,® giving us the simpler recurrence

T(n)=2T(n/2)+0(n).

The “all levels equal” case of the recursion tree method now immediately implies the closed-form
solution T(n) = O(nlogn). (Recursion trees and domain transformations are described in detail
in a separate note on solving recurrences.)

1.5 Quicksort

Quicksort is another recursive sorting algorithm, discovered by Tony Hoare in 1962. In this
algorithm, the hard work is splitting the array into subsets so that merging the final result is
trivial.

1. Choose a pivot element from the array.

2. Partition the array into three subarrays containing the elements smaller than the pivot, the
pivot element itself, and the elements larger than the pivot.

3. Recursively quicksort the first and last subarray.

Iput S 0 R T I N G E X A M P L
Chooseapivot: S 0 R T I N G E X A M P
Partiion: A G E I|L|N R O X S M P T
Recurse: A E G I ‘ L ‘ M N O P R S T X

A quicksort example.

Here’s a more detailed description of the algorithm. In the separate PARTITION subroutine, the
input parameter p is index of the pivot element in the unsorted array; the subroutine partitions
the array and returns the new index of the pivot.

ParTITION(A[1..1n], p):
swap A[p] < A[n]

i<—0
jen
while (i < j)
repeat i « i+ 1 until (i > j or A[i] = A[n])
repeat j < j—1 until (i > j or A[j] < A[n])
if (i < j)
swap A[i] < A[j]

QuickSorT(A[1..n]):
if(n>1)
Choose a pivot element A[p]
1 < PARTITION(A, p)
QUICKSORT(A[1..r —1])
QUICKSORT(A[r + 1..n])

swap A[i] «— A[n]
return i

Just like mergesort, proving QUICKSORT is correct requires two separate induction proofs:
one to prove that PARTITION correctly partitions the array, and the other to prove that QuickSorT
correctly sorts assuming PARTITION is correct. I'll leave the gory details as an exercise for the
reader.

The analysis is also similar to mergesort. PARTITION runs in O(n) time: j—i = n at the
beginning, j —i = 0 at the end, and we do a constant amount of work each time we increment i

3See the course notes on solving recurrences for more details.

Algorithms Lecture 1: Recursion [Fa’14]

or decrement j. For QUICKSORT, we get a recurrence that depends on r, the rank of the chosen
pivot element:
T(n)=T(r—1)+T(n—r)+0(n)

If we could somehow choose the pivot to be the median element of the array A, we would have
r =[n/2], the two subproblems would be as close to the same size as possible, the recurrence
would become

T(n) =2T([n/21—1) + T([n/2]) + O(n) < 2T (n/2) + O(n),

and we’d have T(n) = O(nlogn) by the recursion tree method.

In fact, as we will see shortly, we can locate the median element in an unsorted array in
linear time. However, the algorithm is fairly complicated, and the hidden constant in the O(-)
notation is large enough to make the resulting sorting algorithm impractical. In practice, most
programmers settle for something simple, like choosing the first or last element of the array. In
this case, r take any value between 1 and n, so we have

T(n) = max (T(r —1)+Th—r)+ O(n)).

In the worst case, the two subproblems are completely unbalanced—either r = 1 or r = n—and
the recurrence becomes T'(n) < T(n— 1)+ O(n). The solution is T(n) = 0(n?).

Another common heuristic is called “median of three”—choose three elements (usually at
the beginning, middle, and end of the array), and take the median of those three elements
the pivot. Although this heuristic is somewhat more efficient in practice than just choosing
one element, especially when the array is already (nearly) sorted, we can still have r = 2
or r = n—1 in the worst case. With the median-of-three heuristic, the recurrence becomes
T(n) < T(1)+ T(n—2) + 0(n), whose solution is still T(n) = 0(n?).

Intuitively, the pivot element will ‘usually’ fall somewhere in the middle of the array,
say between n/10 and 9n/10. This observation suggests that the average-case running time is
O(nlogn). Although this intuition is actually correct (at least under the right formal assumptions),
we are still far from a proof that quicksort is usually efficient. We will formalize this intuition
about average-case behavior in a later lecture.

1.6 The Pattern

Both mergesort and and quicksort follow a general three-step pattern shared by all divide and
conquer algorithms:

1. Divide the given instance of the problem into several independent smaller instances.
2. Delegate each smaller instance to the Recursion Fairy.

3. Combine the solutions for the smaller instances into the final solution for the given
instance.

If the size of any subproblem falls below some constant threshold, the recursion bottoms out.
Hopefully, at that point, the problem is trivial, but if not, we switch to a different algorithm
instead.

Proving a divide-and-conquer algorithm correct almost always requires induction. Analyzing
the running time requires setting up and solving a recurrence, which usually (but unfortunately
not always!) can be solved using recursion trees, perhaps after a simple domain transformation.

Algorithms Lecture 1: Recursion [Fa’14]

1.7 Median Selection

So how do we find the median element of an array in linear time? The following algorithm was
discovered by Manuel Blum, Bob Floyd, Vaughan Pratt, Ron Rivest, and Bob Tarjan in the early
1970s. Their algorithm actually solves the more general problem of selecting the kth largest
element in an n-element array, given the array and the integer g as input, using a variant of an
algorithm called either “quickselect” or “one-armed quicksort”. The basic quickselect algorithm
chooses a pivot element, partitions the array using the PARTITION subroutine from QUICKSORT,
and then recursively searches only one of the two subarrays.

QuickSELECT(A[1..n], k):
ifn=1
return A[1]
else
Choose a pivot element A[p]
r « ParTITION(A[1..n], p)

ifk<r

return QuUickSELECT(A[1..r —1],k)
elseif k> r

return QuickSELECT(A[r +1..n],k—r)
else

return Al r]

The worst-case running time of QUICKSELECT obeys a recurrence similar to the quicksort
recurrence. We don’t know the value of r or which subarray we’ll recursively search, so we’ll just
assume the worst.

T(n) < max (max{T(r—1),T(n—r)}+0(n))

We can simplify the recurrence by using ¢ to denote the length of the recursive subproblem:

T(n) < 0<I?<ax_1 T()+0(n) < T(n—1)+0(n)

As with quicksort, we get the solution T(n) = O(n?) when £ = n— 1, which happens when the
chosen pivot element is either the smallest element or largest element of the array.

On the other hand, we could avoid this quadratic behavior if we could somehow magically
choose a good pivot, where £ < an for some constant a < 1. In this case, the recurrence would
simplify to

T(n) < T(an)+ O(n).

This recurrence expands into a descending geometric series, which is dominated by its largest
term, so T(n) = O(n).

The Blum-Floyd-Pratt-Rivest-Tarjan algorithm chooses a good pivot for one-armed quicksort
by recursively computing the median of a carefully-selected subset of the input array.

Algorithms Lecture 1: Recursion [Fa’14]

MomsSELECT(A[1..n], k):

if n <25
use brute force

else
m «— [n/5]
fori —1tom

M[i] < MEDIANOFFIvE(A[5i —4..51]) {(Brute force!))

mom «— MomSELECT(M[1..m],[m/2]) {(Recursion!))

r « PARTITION(A[1..n], mom)

ifk<r

return MOMSELECT(A[1..r — 1], k) {(Recursion!))
elseif k > r

return MoMSELECT(A[r + 1..n],k—r) {(Recursion!))
else

return mom

The recursive structure of the algorithm requires a slightly larger base case. There’s absolutely
nothing special about the constant 25 in the pseudocode; for theoretical purposes, any other
constant like 42 or 666 or 8765309 would work just as well.

If the input array is too large to handle by brute force, we divide it into [n/5] blocks, each
containing exactly 5 elements, except possibly the last. (If the last block isn’t full, just throw in a
few o0s.) We find the median of each block by brute force and collect those medians into a new
array M[1..[n/5]]. Then we recursively compute the median of this new array. Finally we use
the median of medians — hence ‘mom’ — as the pivot in one-armed quicksort.

The key insight is that neither of these two subarrays can be too large. The median of
medians is larger than [[n/5]/2]—1 ~ n/10 block medians, and each of those medians is larger
than two other elements in its block. Thus, mom is larger than at least 3n/10 elements in the
input array, and symmetrically, mom is smaller than at least 3n/10 input elements. Thus, in the
worst case, the final recursive call searches an array of size 7n/10.

We can visualize the algorithm’s behavior by drawing the input array as a 5 x [n/5] grid,
which each column represents five consecutive elements. For purposes of illustration, imagine
that we sort every column from top down, and then we sort the columns by their middle element.
(Let me emphasize that the algorithm does not actually do this!) In this arrangement, the
median-of-medians is the element closest to the center of the grid.

Visualizing the median of medians

The left half of the first three rows of the grid contains 3n/10 elements, each of which is
smaller than the median-of-medians. If the element we’re looking for is larger than the median-of-
medians, our algorithm will throw away everything smaller than the median-of-median, including
those 3n/10 elements, before recursing. Thus, the input to the recursive subproblem contains at
most 7n/10 elements. A symmetric argument applies when our target element is smaller than
the median-of-medians.

Algorithms Lecture 1: Recursion [Fa’14]

0000 ee0leeeeees
000000066
OOOOOOOO@ggggggg

(I X IC I)
COC0000000OO0000

Discarding approximately 3/10 of the array

We conclude that the worst-case running time of the algorithm obeys the following recurrence:
T(n) < 0(n) + T(n/5) + T(7n/10).

The recursion tree method implies the solution T(n) = O(n).

Finer analysis reveals that the constant hidden by the O() is quite large, even if we count
only comparisons; this is not a practical algorithm for small inputs. (In particular, mergesort uses
fewer comparisons in the worst case when n < 4,000,000.) Selecting the median of 5 elements
requires at most 6 comparisons, so we need at most 6n1/5 comparisons to set up the recursive
subproblem. We need another n — 1 comparisons to partition the array after the recursive call
returns. So a more accurate recurrence for the total number of comparisons is

T(n)<11n/5+ T(n/5)+ T(7n/10).

The recursion tree method implies the upper bound

11n 9\ 11n
T(n) < — Z | ===.10=22n.
(m) 5 Z:(10) 5

i>0

1.8 Multiplication

Adding two n-digit numbers takes O(n) time by the standard iterative ‘ripple-carry’ algorithm,
using a lookup table for each one-digit addition. Similarly, multiplying an n-digit number by a
one-digit number takes O(n) time, using essentially the same algorithm.

What about multiplying two n-digit numbers? In most of the world, grade school students
(supposedly) learn to multiply by breaking the problem into n one-digit multiplications and n
additions:

31415962
x 27182818
251327696
31415962
251327696
62831924
251327696
31415962
219911734
62831924
853974377340916

We could easily formalize this algorithm as a pair of nested for-loops. The algorithm runs in
©(n?) time—altogether, there are ©(n?) digits in the partial products, and for each digit, we

10

Algorithms Lecture 1: Recursion [Fa’14]

spend constant time. The Egyptian/Russian peasant multiplication algorithm described in the
first lecture also runs in ©(n?) time.
Perhaps we can get a more efficient algorithm by exploiting the following identity:

(10™a + b)(10™c +d) = 10*™ac + 10™(bc + ad) + bd

Here is a divide-and-conquer algorithm that computes the product of two n-digit numbers x
and y, based on this formula. Each of the four sub-products e, f, g,h is computed recursively.
The last line does not involve any multiplications, however; to multiply by a power of ten, we just
shift the digits and fill in the right number of zeros.

Murriery(x, y, n):

ifn=1
return x - y

else
m«[n/2]
a<|x/10™]|; b« x mod 10™
d <« |y/10™]; ¢ « y mod 10™
e « Murrtrprry(a, c, m)
f < Murripry(b,d, m)
g «— Murtipry(b, c,m)
h « Murripery(a,d, m)
return 10?™e +10™(g + h) + f

You can easily prove by induction that this algorithm is correct. The running time for this
algorithm is given by the recurrence

T(n) =4T([n/2])+06(n), T(1)=1,

which solves to T'(n) = ©(n?) by the recursion tree method (after a simple domain transformation).
Hmm. . .I guess this didn’t help after all.

In the mid-1950s, the famous Russian mathematician Andrey Kolmogorov conjectured that
there is no algorithm to multiply two n-digit numbers in o(n?) time. However, in 1960, after
Kolmogorov posed his conjecture at a seminar at Moscow University, Anatolii Karatsuba, one of
the students in the seminar, discovered a remarkable counterexample. According to Karastuba
himself,

After the seminar I told Kolmogorov about the new algorithm and about the disproof of the
n? conjecture. Kolmogorov was very agitated because this contradicted his very plausible
conjecture. At the next meeting of the seminar, Kolmogorov himself told the participants
about my method, and at that point the seminar was terminated.

Karastuba observed that the middle coefficient bc + ad can be computed from the other two
coefficients ac and bd using only one more recursive multiplication, via the following algebraic
identity:

ac+bd—(a—b)(c—d)=bc+ad

This trick lets us replace the last three lines in the previous algorithm as follows:

11

Algorithms Lecture 1: Recursion [Fa’14]

FastMuLTtiPLY(X, y, n):
ifn=1
return x - y

else
m e« [n/2]
a« |[x/10™]; b« x mod 10™
d <« |y/10™]; ¢ « y mod 10™
e « FastMurripry(a,c, m)
f <« FastMurTtiriy(b,d, m)
g < FastMurTtiPiy(a — b,c —d, m)
return 102™e +10™(e+ f —g)+ f

The running time of Karatsuba’s FAsTMULTIPLY algorithm is given by the recurrence
T(n) <3T([n/2])+0O(n), T(1)=1.

After a domain transformation, we can plug this into a recursion tree to get the solution
T(n) = 0(n'#3) = 0(n' %), a significant improvement over our earlier quadratic-time algorithm.*
Karastuba’s algorithm arguably launched the design and analysis of algorithms as a formal field
of study.

Of course, in practice, all this is done in binary instead of decimal.

We can take this idea even further, splitting the numbers into more pieces and combining
them in more complicated ways, to obtain even faster multiplication algorithms. Andrei Toom
and Stephen Cook discovered an infinite family of algorithms that split any integer into k parts,
each with n/k digits, and then compute the product using only 2k — 1 recursive multiplications.
For any fixed k, the resulting algorithm runs in O(n'*'/(8%)) time, where the hidden constant in
the O(-) notation depends on k.

Ultimately, this divide-and-conquer strategy led Gauss (yes, really) to the discovery of the Fast
Fourier transform, which we discuss in detail in the next lecture note. The fastest multiplication
algorithm known, published by Martin Fiirer in 2007 and based on FFTs, runs in nlogn2°0og ™
time. Here, log* n is the slowly growing iterated logarithm of n, which is the number of times one
must take the logarithm of n before the value is less than 1:

. 1 ifn<2,
Ighn= .
1+1g*(lgn) otherwise.

(For all practical purposes, log*n < 6.) It is widely conjectured that the best possible algorithm
for multiply two n-digit numbers runs in ©(nlogn) time.
1.9 Exponentiation

Given a number a and a positive integer n, suppose we want to compute a". The standard naive
method is a simple for-loop that does n — 1 multiplications by a:

SLowPowEeR(a, n):
X —a
fori<—2ton

Xe—Xx-a
return x

4Karatsuba actually proposed an algorithm based on the formula (a+c¢)(b+d)—ac—bd = bc+ad. This algorithm
also runs in O(n'¢?) time, but the actual recurrence is a bit messier: a— b and ¢ —d are still m-digit numbers, but a + b
and ¢ + d might have m + 1 digits. The simplification presented here is due to Donald Knuth. The same technique was
used by Gauss in the 1800s to multiply two complex numbers using only three real mutliplications.

12

Algorithms Lecture 1: Recursion [Fa’14]

This iterative algorithm requires n multiplications.

Notice that the input a could be an integer, or a rational, or a floating point number. In fact,
it doesn’t need to be a number at all, as long as it’s something that we know how to multiply. For
example, the same algorithm can be used to compute powers modulo some finite number (an
operation commonly used in cryptography algorithms) or to compute powers of matrices (an
operation used to evaluate recurrences and to compute shortest paths in graphs). All we really
require is that a belong to a multiplicative group.> Since we don’t know what kind of things
we’re multiplying, we can’t know how long a multiplication takes, so we’re forced analyze the
running time in terms of the number of multiplications.

There is a much faster divide-and-conquer method, using the following simple recursive

formula:
a = qln/2l. /21,

What makes this approach more efficient is that once we compute the first factor al”?!, we can
compute the second factor a//?! using at most one more multiplication.

FasTPowER(a, n):
ifn=1
return a
else
x « FastPoweR(a,|n/2])
if n is even
return x - x

else

return x - x - a

The total number of multiplications satisfies the recurrence T(n) < T(|n/2]) + 2, with
the base case T(1) = 0. After a domain transformation, recursion trees give us the solution
T(n) = O(logn).

Incidentally, this algorithm is asymptotically optimal—any algorithm for computing a™ must
perform at least Q(logn) multiplications. In fact, when n is a power of two, this algorithm is
exactly optimal. However, there are slightly faster methods for other values of n. For example, our

divide-and-conquer algorithm computes a'® in six multiplications (a'®* =a’-a’-a; a’ = a®-a>-aq;
3

a® = a-a-a), but only five multiplications are necessary (a — a? — a® — a® — a'® — a®®). It is
an open question whether the absolute minimum number of multiplications for a given exponent

n can be computed efficiently.

Exercises

1. Prove that the Russian peasant multiplication algorithm runs in ©(n?) time, where n is the
total number of input digits.

2. (a) Professor George O’Jungle has a 27-node binary tree, in which every node is labeled
with a unique letter of the Roman alphabet or the character & Preorder and postorder
traversals of the tree visit the nodes in the following order:

5A multiplicative group (G, ®) is a set G and a function ® : G x G — G, satisfying three axioms:
1. There is a unit element 1 € G such that 1 ® g = g ® 1 for any element g € G.

2. Any element g € G has a inverse element g € Gsuchthat g® gl =g '®@g=1

3. The function is associative: for any elements f,g,h € G, we have f ® (g®h) =(f ® g) ® h.

13

Algorithms Lecture 1: Recursion [Fa’14]

®* Preorder: IQJHLEMVOTSBRGYZKCA&GFPNUDWX
* Postorder: HEMLJVQSGYRZBTCPUDNFW&XAKOTI

Draw George’s binary tree.

(b) Prove that there is no algorithm to reconstruct an arbtirary binary tree from its
preorder and postorder node sequences.

(c) Recall that a binary tree is full if every non-leaf node has exactly two children.
Describe and analyze a recursive algorithm to reconstruct an arbitrary full binary tree,
given its preorder and postorder node sequences as input.

(d) Describe and analyze a recursive algorithm to reconstruct an arbtirary binary tree,
given its preorder and inorder node sequences as input.

(e) Describe and analyze a recursive algorithm to reconstruct an arbitrary binary search
tree, given only its preorder node sequence. Assume all input keys are distinct. For
extra credit, describe an algorithm that runs in O(n) time.

In parts (b), (c), and (d), assume that all keys are distinct and that the input is consistent
with at least one binary tree.

3. Consider a 2™ x 2" chessboard with one (arbitrarily chosen) square removed.

(a) Prove that any such chessboard can be tiled without gaps or overlaps by L-shaped
pieces, each composed of 3 squares.

(b) Describe and analyze an algorithm to compute such a tiling, given the integer n and
two n-bit integers representing the row and column of the missing square. The output
is a list of the positions and orientations of (4™ —1)/3 tiles. Your algorithm should
run in O(4") time.

4. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation
you can perform is a flip—insert a spatula under the top k pancakes, for some integer k
between 1 and n, and flip them all over.

(-~\ —— /—-\‘ R = N

Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using as few flips as
possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using as few flips as possible. Exactly how many flips does your algorithm perform in
the worst case?

14

Algorithms Lecture 1: Recursion [Fa’14]

5. Prove that the original recursive Tower of Hanoi algorithm is exactly equivalent to each of
the following non-recursive algorithms. In other words, prove that all three algorithms
move exactly the same sequence of disks, to and from the same pegs, in the same order.
The pegs are labeled 0, 1, and 2, and our problem is to move a stack of n disks from peg 0
to peg 2 (as shown on page ??).

(a) Repeatedly make the only legal move that satisfies the following constraints:
* Never move the same disk twice in a row.
* If n is even, always move the smallest disk forward (- —>0—-1—-2—->0—---).
* Ifnis odd, always move the smallest disk backward (--- >0—>2—>1—->0—>---).
If there is no move that satisfies these three constraints, the puzzle is solved.
(b) Start by putting your finger on the top of peg 0. Then repeat the following steps:
i. If n is odd, move your finger to the next peg (- —>0—-1—-2—->0—---).
ii. If n is even, move your finger to the previous peg (---—>0—>2—->1—-0—---).
iii. Make the only legal move that does not require you to lift your finger. If there is
no such move, the puzzle is solved.

(¢) Let p(n) denote the smallest integer k such that n/2¥ is not an integer. For example,
p(42) = 2, because 42/2! is an integer but 42/22 is not. (Equivalently, p(n) is one
more than the position of the least significant 1 in the binary representation of n.)
Because its behavior resembles the marks on a ruler, p(n) is sometimes called the
ruler function:

1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3, 1, ...

Here’s the non-recursive algorithm in one line:

In step i, move disk p (i) forward if n —i is even, backward if n —i is odd.

When this rule requires us to move disk n + 1, the puzzle is solved.

6. A less familiar chapter in the Tower of Hanoi’s history is its brief relocation of the temple
from Benares to Pisa in the early 13th century. The relocation was organized by the
wealthy merchant-mathematician Leonardo Fibonacci, at the request of the Holy Roman
Emperor Frederick II, who had heard reports of the temple from soldiers returning from
the Crusades. The Towers of Pisa and their attendant monks became famous, helping to
establish Pisa as a dominant trading center on the Italian peninsula.

Unfortunately, almost as soon as the temple was moved, one of the diamond needles
began to lean to one side. To avoid the possibility of the leaning tower falling over from too
much use, Fibonacci convinced the priests to adopt a more relaxed rule: Any number of
disks on the leaning needle can be moved together to another needle in a single move.
It was still forbidden to place a larger disk on top of a smaller disk, and disks had to be
moved one at a time onto the leaning needle or between the two vertical needles.

15

Algorithms Lecture 1: Recursion [Fa’14]

= 2 [N
EN, EVa
== N L o= S

The Towers of Pisa. In the fifth move, two disks are taken off the leaning needle.

=
EX

b b

Thanks to Fibonacci’s new rule, the priests could bring about the end of the universe
somewhat faster from Pisa then they could than could from Benares. Fortunately, the
temple was moved from Pisa back to Benares after the newly crowned Pope Gregory IX
excommunicated Frederick II, making the local priests less sympathetic to hosting foreign
heretics with strange mathematical habits. Soon afterward, a bell tower was erected on
the spot where the temple once stood; it too began to lean almost immediately.

Describe an algorithm to transfer a stack of n disks from one vertical needle to the other
vertical needle, using the smallest possible number of moves. Exactly how many moves
does your algorithm perform?

7. Consider the following restricted variants of the Tower of Hanoi puzzle. In each problem,
the pegs are numbered 0, 1, and 2, as in problem ??, and your task is to move a stack of n
disks from peg 1 to peg 2.

(a) Suppose you are forbidden to move any disk directly between peg 1 and peg 2; every
move must involve peg 0. Describe an algorithm to solve this version of the puzzle in
as few moves as possible. Exactly how many moves does your algorithm make?

(b) Suppose you are only allowed to move disks from peg O to peg 2, from peg 2 to
peg 1, or from peg 1 to peg 0. Equivalently, suppose the pegs are arranged in a
circle and numbered in clockwise order, and you are only allowed to move disks
counterclockwise. Describe an algorithm to solve this version of the puzzle in as few
moves as possible. How many moves does your algorithm make?

—O | e ©

5 6 7

s

A top view of the first eight moves in a counterclockwise Towers of Hanoi solution

*(c) Finally, suppose your only restriction is that you may never move a disk directly from
peg 1 to peg 2. Describe an algorithm to solve this version of the puzzle in as few
moves as possible. How many moves does your algorithm make? [Hint: This variant
is considerably harder to analyze than the other two.]

16

Algorithms Lecture 1: Recursion [Fa’14]

8. A German mathematician developed a new variant of the Towers of Hanoi game, known in
the US literature as the “Liberty Towers” game.¢ In this variant, there is a row of k pegs,
numbered from 1 to k. In a single turn, you are allowed to move the smallest disk on peg i
to either peg i —1 or peg i + 1, for any index i; as usual, you are not allowed to place a
bigger disk on a smaller disk. Your mission is to move a stack of n disks from peg 1 to peg k.

(a) Describe a recursive algorithm for the case k = 3. Exactly how many moves does your
algorithm make? (This is the same as part (a) of the previous question.)

(b) Describe a recursive algorithm for the case k = n + 1 that requires at most O(n®)
moves. [Hint: Use part (a).]

(c) Describe a recursive algorithm for the case k = n + 1 that requires at most O(n?)
moves. [Hint: Don’t use part (a).]

(d) Describe a recursive algorithm for the case k = 4/n that requires at most a polynomial
number of moves. (What polynomial??)

*(e) Describe and analyze a recursive algorithm for arbitrary n and k. How small must k
be (as a function of n) so that the number of moves is bounded by a polynomial in n?

9. Most graphics hardware includes support for a low-level operation called blit, or block
transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional array
of pixel values) from one location to another. This is a two-dimensional version of the
standard C library function memcpy ().

Suppose we want to rotate an n x n pixel map 90° clockwise. One way to do this, at
least when n is a power of two, is to split the pixel map into four n/2 x n/2 blocks, move
each block to its proper position using a sequence of five blits, and then recursively rotate
each block. (Why five? For the same reason the Tower of Hanoi puzzle needs a third peg.)
Alternately, we could first recursively rotate the blocks and then blit them into place.

ClA

EEE
B
D

w

>
0|0

-
)

Two algorithms for rotating a pixel map.
Black arrows indicate blitting the blocks into place; white arrows indicate recursively rotating the blocks.

(a) Prove that both versions of the algorithm are correct when n is a power of 2.
(b) Exactly how many blits does the algorithm perform when n is a power of 2?

(c) Describe how to modify the algorithm so that it works for arbitrary n, not just powers
of 2. How many blits does your modified algorithm perform?

(d) What is your algorithm’s running time if a k x k blit takes O(k?) time?
(e) What if a k x k blit takes only O(k) time?

6No it isn’t.

17

Algorithms

Lecture 1: Recursion [Fa’14]

The first rotation algorithm (blit then recurse) in action.

10. Prove that quicksort with the median-of-three heuristic requires Q(n?) time to sort an
array of size n in the worst case. Specifically, for any integer n, describe a permutation of
the integers 1 through n, such that in every recursive call to median-of-three-quicksort,
the pivot is always the second smallest element of the array. Designing this permutation
requires intimate knowledge of the PARTITION subroutine.

11.

(@

(b)

@

(b)

()

(d)

(e)

As a warm-up exercise, assume that the PARTITION subroutine is stable, meaning it
preserves the existing order of all elements smaller than the pivot, and it preserves
the existing order of all elements smaller than the pivot.

Assume that the PARTITION subroutine uses the specific algorithm listed on page ?? of
this lecture note, which is not stable.

Prove that the following algorithm actually sorts its input.

STOOGESORT(A[0..n—1]):

if n=2and A[0] > A[1]
swap A[0] «—> A[1]

elseif n > 2
m=1[2n/3]
STOOGESORT(A[0..m—1])
STOOGESORT(A[n—m..n—1])
STOOGESORT(A[0..m—1])

Would STOOGESORT still sort correctly if we replaced m = [2n/3] with m = [2n/3]?
Justify your answer.

State a recurrence (including the base case(s)) for the number of comparisons
executed by STOOGESORT.

Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the
ceiling.]

Prove that the number of swaps executed by STOOGESORT is at most (g)

12. Consider the following cruel and unusual sorting algorithm.

18

Algorithms Lecture 1: Recursion [Fa’14]

CrUEL(A[1..n]):

ifn>1
CrUEL(A[1..n/2])
CrUEL(A[n/2+1..n])
UnusuaL(A[1..n])

UnusuaL(A[1..n]):
ifn=2
ifA[1] > A[2] {(the only comparison!))
swap A[1] «—> A[2]
else
fori < 1ton/4 {(swap 2nd and 3rd quarters))
swap Ali +n/4] <> Ali +n/2]
UnusUAL(A[1..n/2]) {(recurse on left half))
UnusuaL(A[n/2+1..n]) {(recurse on right half))
UNuUsUAL(A[n/4+1..3n/4]) {(recurse on middle half))

Notice that the comparisons performed by the algorithm do not depend at all on the values
in the input array; such a sorting algorithm is called oblivious. Assume for this problem
that the input size n is always a power of 2.

(a) Prove by induction that CRUEL correctly sorts any input array. [Hint: Consider an
array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case
enough?]

(b) Prove that CRUEL would not correctly sort if we removed the for-loop from UNUSUAL.
(c) Prove that CRUEL would not correctly sort if we swapped the last two lines of UNUSUAL.
(d) What is the running time of UNUsUAL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answer.

13. You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates;
each delegate is a member of exactly one political party. It is impossible to tell which
political party any delegate belongs to; in particular, you will be summarily ejected from
the convention if you ask. However, you can determine whether any pair of delegates
belong to the same party or not simply by introducing them to each other—members of
the same party always greet each other with smiles and friendly handshakes; members of
different parties always greet each other with angry stares and insults.

(a) Suppose more than half of the delegates belong to the same political party. Describe
an efficient algorithm that identifies all members of this majority party.

(b) Now suppose exactly k political parties are represented at the convention and one
party has a plurality: more delegates belong to that party than to any other. Present
a practical procedure to pick out the people from the plurality political party as
parsimoniously as possible. (Please.)

19

Algorithms Lecture 1: Recursion [Fa’14]

14.

15.

16.

17.

An inversion in an array A[1..n] is a pair of indices (i, j) such that i < j and A[i] > A[j].
The number of inversions in an n-element array is between 0 (if the array is sorted) and ('21)
(if the array is sorted backward). Describe and analyze an algorithm to count the number
of inversions in an n-element array in O(nlogn) time. [Hint: Modify mergesort.]

(a) Suppose you are given two sets of n points, one set {py, ps,...,P,} on the line y =0
and the other set {q;,¢s,...,q,} on the line y = 1. Create a set of n line segments
by connect each point p; to the corresponding point g;. Describe and analyze a
divide-and-conquer algorithm to determine how many pairs of these line segments
intersect, in O(nlogn) time.

(b) Now suppose you are given two sets {p1, pa,---,Pn} and {q;,qs,...,q,} of n points
on the unit circle. Connect each point p; to the corresponding point q;. Describe and
analyze a divide-and-conquer algorithm to determine how many pairs of these line
segments intersect in O(nlog2 n) time. [Hint: Use your solution to part (a).]

(c) Solve the previous problem in O(nlogn) time.

A 9, 4, 9 9 A

p, P, P, P, PP, Py P; gy 9

Eleven intersecting pairs of segments with endpoints on parallel lines,
and ten intersecting pairs of segments with endpoints on a circle.

Suppose we are given a set S of n items, each with a value and a weight. For any element
x € S, we define two subsets

* S, is the set of all elements of S whose value is smaller than the value of x.

* S, is the set of all elements of S whose value is larger than the value of x.

For any subset R C S, let w(R) denote the sum of the weights of elements in R. The
weighted median of R is any element x such that w(S_,) < w(S)/2 and w(S-,) < w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given weighted
set in O(n) time. Your input consists of two unsorted arrays S[1..n] and W[1..n], where
for each index i, the ith element has value S[i] and weight W[i]. You may assume that all
values are distinct and all weights are positive.

Describe an algorithm to compute the median of an array A[1..5] of distinct numbers
using at most 6 comparisons. Instead of writing pseudocode, describe your algorithm using
a decision tree: A binary tree where each internal node contains a comparison of the form
“Ali] 2 A[j]?” and each leaf contains an index into the array.

20

Algorithms Lecture 1: Recursion [Fa’14]

< >
< > < >
/ AN / AN
(A[2]:A[3]) |A[1] | |A[1] | (A[2].-A[3])
7\ 7\

< > < >

Finding the median of a 3-element array using at most 3 comparisons

18. Consider the following generalization of the Blum-Floyd-Pratt-Rivest-Tarjan SELECT algo-
rithm, which partitions the input array into [n/b] blocks of size b, instead of [n/5] blocks
of size 5, but is otherwise identical. In the pseudocode below, the necessary modifications
are indicated in red.

Mowm,, SELECT(A[1..n], k):

if n < b?
use brute force

else
me«[n/b]
fori < 1tom

M[i] « MEDIANOFB(A[b(i —1)+1..bi])

mom,, < MoM, SELECT(M[1..m],|m/2])

r < PARTITION(A[1..n],mom,)

ifk<r

return Mom, SELECT(A[1..r —1],k)
elseif k> r

return Mom, SELECT(A[r +1..n],k—r)
else

return mom,,

(a) State a recurrence for the running time of Mom; SELECT, assuming that b is a constant
(so the subroutine MEDIANOFB runs in O(1) time). In particular, how do the sizes of
the recursive subproblems depend on the constant b? Consider even b and odd b
separately.

(b) What is the running time of Mom; SELECT? [Hint: This is a trick question.]
*(c) What is the running time of Mom,SELECT? [Hint: This is an unfair question.]

(d) What is the running time of MoM;SELECT?

(e) What is the running time of MoMm4SELECT?

(f) For any constants b > 5, the algorithm Mowm,SELECT runs in O(n) time, but different
values of b lead to different constant factors. Let M(b) denote the minimum number
of comparisons required to find the median of b numbers. The exact value of M (b) is
known only for b < 13:

6 7 8 9 10 11 12 13
8 10 12 14 16 18 20 23

21

Algorithms Lecture 1: Recursion [Fa’14]

19.

20.

21.

22.

For each b between 5 and 13, find an upper bound on the running time of MoM; SELECT
of the form T(n) < an for some explicit constant a;. (For example, on page 8 we
showed that ag < 22.)

(g) Which value of b yields the smallest constant a,? [Hint: This is a trick question.]

An array A[0..n — 1] of n distinct numbers is bitonic if there are unique indices i and
j such that A[(i — 1) mod n] < A[i] > A[(i + 1) mod n] and A[(j — 1) mod n] > A[j] <
A[(j + 1) mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

|4:6.9:8;7:5:1:2:3]| isbitonic, but
[3:6.9:8:7:5:1:2:4]| isnot bitonic.

Describe and analyze an algorithm to find the smallest element in an n-element bitonic
array in O(logn) time. You may assume that the numbers in the input array are distinct.

Suppose we are given an array A[1..n] with the special property that A[1] > A[2] and
A[n—1] < A[n]. We say that an element A[x] is a local minimum if it is less than or
equal to both its neighbors, or more formally, if Alx —1] = A[x] and A[x] < A[x + 1]. For
example, there are six local minima in the following array:

of7]7]2]1]3]7]5]4]7]3]|3]4]8]6]9]

We can obviously find a local minimum in O(n) time by scanning through the array.
Describe and analyze an algorithm that finds a local minimum in O(logn) time. [Hint:
With the given boundary conditions, the array must have at least one local minimum. Why?]

Suppose you are given a sorted array of n distinct numbers that has been rotated k steps,
for some unknown integer k between 1 and n— 1. That is, you are given an array A[1..n]
such that the prefix A[1..k] is sorted in increasing order, the suffix A[k + 1..n] is sorted in
increasing order, and A[n] < A[1].

For example, you might be given the following 16-element array (where k = 10):

9:13:16:18:19:23:28:31:37:42 —4§0§2§5§7§8|

(a) Describe and analyze an algorithm to compute the unknown integer k.

(b) Describe and analyze an algorithm to determine if the given array contains a given
number x.

You are a contestant on the hit game show “Beat Your Neighbors!” You are presented with
an m x n grid of boxes, each containing a unique number. It costs $100 to open a box. Your
goal is to find a box whose number is larger than its neighbors in the grid (above, below,
left, and right). If you spend less money than any of your opponents, you win a week-long
trip for two to Las Vegas and a year’s supply of Rice-A-Roni™, to which you are hopelessly
addicted.

22

Algorithms

Lecture 1: Recursion [Fa’14]

23.

24.

@

*(b)

()

@

(b)

(o)

@

(b)

(o)

Suppose m = 1. Describe an algorithm that finds a number that is bigger than either
of its neighbors. How many boxes does your algorithm open in the worst case?

Suppose m = n. Describe an algorithm that finds a number that is bigger than any of
its neighbors. How many boxes does your algorithm open in the worst case?

Prove that your solution to part (b) is optimal up to a constant factor.

Suppose we are given two sorted arrays A[1..n] and B[1..n] and an integer k.
Describe an algorithm to find the kth smallest element in the union of A and B in
©(logn) time. For example, if k = 1, your algorithm should return the smallest
element of AUB; if k = n, your algorithm should return the median of AUB.) You can
assume that the arrays contain no duplicate elements. [Hint: First solve the special
case k =n.]

Now suppose we are given three sorted arrays A[1..n], B[1..n], and C[1..n], and
an integer k. Describe an algorithm to find the kth smallest element in AUB U C in
O(logn) time.

Finally, suppose we are given a two dimensional array A[1..m][1..n] in which every
row A[i][] is sorted, and an integer k. Describe an algorithm to find the kth smallest
element in A as quickly as possible. How does the running time of your algorithm
depend on m? [Hint: Use the linear-time SELECT algorithm as a subroutine.]

Describe an algorithm that sorts an input array A[1..n] by calling a subroutine
SQrTSorT(k), which sorts the subarray A[k +1..k+ ﬁ] in place, given an arbitrary
integer k between o and n — 4/n as input. (To simplify the problem, assume that y/n
is an integer.) Your algorithm is only allowed to inspect or modify the input array
by calling SQRTSORT; in particular, your algorithm must not directly compare, move,
or copy array elements. How many times does your algorithm call SQRTSORT in the
worst case?

Prove that your algorithm from part (a) is optimal up to constant factors. In other
words, if f(n) is the number of times your algorithm calls SQrRTSORT, prove that no
algorithm can sort using o(f (n)) calls to SQrRTSORT. [Hint: See Lecture 19.]

Now suppose SQRTSoRT is implemented recursively, by calling your sorting algorithm
from part (a). For example, at the second level of recursion, the algorithm is sorting
arrays roughly of size n'/#. What is the worst-case running time of the resulting
sorting algorithm? (To simplify the analysis, assume that the array size n has the
form 22k, so that repeated square roots are always integers.)

25. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the points as follows. First we split the box into two smaller boxes with a vertical
line, then we split each of those boxes with horizontal lines, and so on, always alternating
between horizontal and vertical splits. Each time we split a box, the splitting line partitions
the rest of the interior points as evenly as possible by passing through a median point inside
the box (not on its boundary). If a box doesn’t contain any points, we don’t split it any
more; these final empty boxes are called cells.

(@

How many cells are there, as a function of n? Prove your answer is correct.

23

Algorithms Lecture 1: Recursion [Fa’14]

A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function
of n? Prove your answer is correct. Assume that n = 2% —1 for some integer k. [Hint:
There is more than one function f such that f(16) =4.]

(c) Suppose we are given n points stored in a kd-tree. Describe and analyze an algorithm
that counts the number of points above a horizontal line (such as the dashed line in
the figure) as quickly as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n
points, the number of points that lie inside a rectangle R with horizontal and vertical
sides. [Hint: Use part (c).]

26. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a
given binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

*27. Bob Ratenbur, a new student in CS 225, is trying to write code to perform preorder, inorder,
and postorder traversals of binary trees. Bob understands the basic idea behind the traversal
algorithms, but whenever he tries to implement them, he keeps mixing up the recursive
calls. Five minutes before the deadline, Bob frantically submits code with the following
structure:

24

Algorithms Lecture 1: Recursion [Fa’14]
PREORDER(V): INORDER(V): POSTORDER(V):

if v =NuLL if v =NuLL if v =NuULL
return return return

else else else
print label(v) IORDER(left(v)) EEORDER(left(v))
IORDER(left(v)) print label(v) IEEORDER(right(v))
EEORDER(right(v)) EORDER(right(v)) print label(v)

Each Il hides one of the prefixes PRE, IN, or PosT. Moreover, each of the following
function calls appears exactly once in Bob’s submitted code:

PREORDER(left(v)) PREORDER(right(v))
INORDER(left(v)) INORDER(right(v))
PosTORDER(left(v)) PosTORDER(right(v))

Thus, there are precisely 36 possibilities for Bob’s code. Unfortunately, Bob accidentally
deleted his source code after submitting the executable, so neither you nor he knows which
functions were called where.

Now suppose you are given the output of Bob’s traversal algorithms, executed on some
unknown binary tree T. Bob’s output has been helpfully parsed into three arrays Pre[1..n],
In[1..n], and Post[1..n]. You may assume that these traversal sequences are consistent
with exactly one binary tree T; in particular, the vertex labels of the unknown tree T are
distinct, and every internal node in T has exactly two children.

(a) Describe an algorithm to reconstruct the unknown tree T from the given traversal
sequences.

(b) Describe an algorithm that either reconstruct Bob’s code from the given traversal
sequences, or correctly reports that the traversal sequences are consistent with more
than one set of algorithms.

For example, given the input

Pre[l1.n]=[HAECBTIFGD]
In[1.n]=[AHDCETIFBG]
Post[1..n]=[AEIBFCD G H]

your first algorithm should return the following tree:

and your second algorithm should reconstruct the following code:

25

Algorithms

Lecture 1: Recursion [Fa’14]

PREORDER(V): INORDER(V): POSTORDER(V):
if v =NuLL if v =NuLL if v =NuLL
return return return
else else else
print label(v) PosTORDER(left(v)) INOrRDER(left(v))
PREORDER(left(v)) print label(v) INORDER(right(v))
PosTORDER(right(v)) PREORDER(right(v)) print label(v)

28. Consider the following classical recursive algorithm for computing the factorial n! of a

non-

@
(b)

()]

*(d)

(e)

*(®

negative integer n:

FACTORIAL(N):
ifn=0
return 1
else

return n - FACTORIAL(n — 1)

How many multiplications does this algorithm perform?

How many bits are required to write n! in binary? Express your answer in the form
©(f (n)), for some familiar function f (n). [Hint: (n/2)"? < n! < n™]

Your answer to (b) should convince you that the number of multiplications is not a
good estimate of the actual running time of FacToriaL. We can multiply any k-digit
number and any [-digit number in O(k - [) time using the grade-school algorithm (or
the Russian peasant algorithm). What is the running time of FacTorIAL if we use this
multiplication algorithm as a subroutine?

The following algorithm also computes the factorial function, but using a different
grouping of the multiplications:

FacToriaL2(n, m): {(Compute n!/(n—m)!))
ifm=0
return 1
elseifm=1
return n
else
return Factoriar2(n,|m/2]) - Facroriar2(n —|m/2],[m/2])

What is the running time of FAcTor1AL2(n, n) if we use grade-school multiplication?
[Hint: Ignore the floors and ceilings.]

Describe and analyze a variant of Karastuba’s algorithm that can multiply any k-digit
number and any [-digit number, where k > 1, in O(k - 1'8371) = O(k - 19°8°) time.

What are the running times of FacToriAL(n) and Factoriar2(n,n) if we use the
modified Karatsuba multiplication from part (e)?

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

26

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

Ceterum in problematis natura fundatum est, ut methodi quaecunque continuo prolixiores
evadant, quo maiores sunt numeri, ad quos applicantur; attamen pro methodis sequentibus
difficultates perlente increscunt, numerique e septem, octos vel adeo adhuc pluribus figuris
constantes praesertim per secundam felici semper successu tractati fuerunt, omnique
celeritate, quam pro tantis numeris exspectare aequum est, qui secundum omnes methodos
hactenus notas laborem, etiam calculatori indefatigabili intolerabilem, requirerent.

[It is in the nature of the problem that any method will become more prolix as the
numbers to which it is applied grow larger. Nevertheless, in the following methods the
difficulties increase rather slowly, and numbers with seven, eight, or even more digits have
been handled with success and speed beyond expectation, especially by the second method.
The techniques that were previously known would require intolerable labor even for the most
indefatigable calculator.]

— Carl Friedrich GauB, Disquisitiones Arithmeticae (1801)
English translation by A.A. Clarke (1965)

After much deliberation, the distinguished members of the international committee decided
unanimously (when the Russian members went out for a caviar break) that since the Chinese
emperor invented the method before anybody else had even been born, the method should
be named after him. The Chinese emperor’s name was Fast, so the method was called the
Fast Fourier Transform.

— Thomas S. Huang, “How the fast Fourier transform got its name” (1971)

*2 Fast Fourier Transforms

2.1 Polynomials

In this lecture we’ll talk about algorithms for manipulating polynomials: functions of one variable
built from additions, subtractions, and multiplications (but no divisions). The most common
representation for a polynomial p(x) is as a sum of weighted powers of the variable x:

n

p(x)= Zajxj.

j=0

The numbers qa; are called the coefficients of the polynomial. The degree of the polynomial is the
largest power of x whose coefficient is not equal to zero; in the example above, the degree is at
most n. Any polynomial of degree n can be represented by an array P[0..n] of n + 1 coefficients,
where P[] is the coefficient of the x/ term, and where P[n] # 0.

Here are three of the most common operations that are performed with polynomials:
* Evaluate: Give a polynomial p and a number x, compute the number p(x).

* Add: Give two polynomials p and g, compute a polynomial r = p + g, so that r(x) =
p(x)+q(x) for all x. If p and q both have degree n, then their sum p + g also has degree n.

* Multiply: Give two polynomials p and g, compute a polynomial r = p - g, so that
r(x) = p(x)-q(x) for all x. If p and g both have degree n, then their product p - q has
degree 2n.

We learned simple algorithms for all three of these operations in high-school algebra:

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

EvaLUATE(P[0..n], x):
X1 (X=x)
y<0
forj—0ton

y<y+P[jl-X
X<—X-x
return y
Murtipry(P[0..n],Q[0..m]):
forj—Oton+m
R[j]<0
forj<—0Oton
fork —0tom
R[j+k]<R[j+k]+P[j]-Q[k]
return R[0..n+ m]

App(P[0..n],Q[0..n]):
forj<—Oton

R[j] < P[j]+Qlj]
return R[0..n]

EVALUATE uses O(n) arithmetic operations.! This is the best we can hope for, but we can cut
the number of multiplications in half using Horner’s rule:

p(x)=ag+x(a; +x(ay +...+ xa,)).

HorNER(P[0..n], x):
y < P[n]
fori < n—1 downto 0
Yy < x-y+P[i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.

The multiplication algorithm, however, runs in O(n?) time. In the previous lecture, we saw
a divide and conquer algorithm (due to Karatsuba) for multiplying two n-bit integers in only
O(n'83) steps; precisely the same algorithm can be applied here. Even cleverer divide-and-
conquer strategies lead to multiplication algorithms whose running times are arbitrarily close to
linear—O(n' ™) for your favorite value e > O—but with great cleverness comes great confusion.
These algorithms are difficult to understand, even more difficult to implement correctly, and not
worth the trouble in practice thanks to large constant factors.

2.2 Alternate Representations

Part of what makes multiplication so much harder than the other two operations is our input
representation. Coefficients vectors are the most common representation for polynomials, but
there are at least two other useful representations.

2.2.1 Roots

The Fundamental Theorem of Algebra states that every polynomial p of degree n has exactly n
roots ry, Ty, ... 1, such that p(r;) = 0 for all j. Some of these roots may be irrational; some of these
roots may by complex; and some of these roots may be repeated. Despite these complications,

I'm going to assume in this lecture that each arithmetic operation takes O(1) time. This may not be true
in practice; in fact, one of the most powerful applications of fast Fourier transforms is fast integer multiplication.
The fastest algorithm currently known for multiplying two n-bit integers, published by Martin Fiirer in 2007, uses
O(nlogn2°Ues" M) bit operations and is based on fast Fourier transforms.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

this theorem implies a unique representation of any polynomial of the form
n
p()=s] Jx—r))
j=1

where the r;’s are the roots and s is a scale factor. Once again, to represent a polynomial of
degree n, we need a list of n + 1 numbers: one scale factor and n roots.

Given a polynomial in this root representation, we can clearly evaluate it in O(n) time. Given
two polynomials in root representation, we can easily multiply them in O(n) time by multiplying
their scale factors and just concatenating the two root sequences.

Unfortunately, if we want to add two polynomials in root representation, we're out of luck.
There’s essentially no correlation between the roots of p, the roots of g, and the roots of p +g.
We could convert the polynomials to the more familiar coefficient representation first—this takes
0(n?) time using the high-school algorithms—but there’s no easy way to convert the answer
back. In fact, for most polynomials of degree 5 or more in coefficient form, it’s impossible to
compute roots exactly.2

2.2.2 Samples

Our third representation for polynomials comes from a different consequence of the Fundamental
Theorem of Algebra. Given a list of n+ 1 pairs {(xg, ¥o), (X1, ¥1),---, (X, ¥,) }, there is exactly
one polynomial p of degree n such that p(x;) = y; for all j. This is just a generalization of the
fact that any two points determine a unique line, because a line is the graph of a polynomial of
degree 1. We say that the polynomial p interpolates the points (x;, y;). As long as we agree on
the sample locations x; in advance, we once again need exactly n + 1 numbers to represent a
polynomial of degree n.

Adding or multiplying two polynomials in this sample representation is easy, as long as they
use the same sample locations x;. To add the polynomials, just add their sample values. To
multiply two polynomials, just multiply their sample values; however, if we’re multiplying two
polynomials of degree n, we must start with 2n + 1 sample values for each polynomial, because
that’s how many we need to uniquely represent their product. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer straightforward.
The following formula, due to Lagrange, allows us to compute the value of any polynomial of
degree n at any point, given a set of n + 1 samples.

n—1

Yj
(x) = = | [(x—x)
’ on [T Cxj = [Jox=x
Hopefully it’s clear that formula actually describes a polynomial function of x, since each term in
the sum is a scaled product of monomials. It’s also not hard to verify that p(x;) = y; for every
index j; most of the terms of the sum vanish. As I mentioned earlier, the Fundamental Theorem
of Algebra implies that p is the only polynomial that interpolates the points {(x;, y;)}. Lagrange’s
formula can be translated mechanically into an O(n?)-time algorithm.

2.2.3 Summary

We find ourselves in the following frustrating situation. We have three representations for
polynomials and three basic operations. Each representation allows us to almost trivially perform

2This is where numerical analysis comes from.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

a different pair of operations in linear time, but the third takes at least quadratic time, if it can
be done at all!

| evaluate add multiply
coefficients 0o(n) o(n) 0(n?)
roots + scale O(n) o) 0o(n)
samples on2) o) 0(n)

2.3 Converting Between Representations

What we need are fast algorithms to convert quickly from one representation to another. That way,
when we need to perform an operation that’s hard for our default representation, we can switch
to a different representation that makes the operation easy, perform that operation, and then
switch back. This strategy immediately rules out the root representation, since (as I mentioned
earlier) finding roots of polynomials is impossible in general, at least if we’re interested in exact
results.

So how do we convert from coefficients to samples and back? Clearly, once we choose
our sample positions x;, we can compute each sample value y; = p(x;) in O(n) time from the
coefficients using Horner’s rule. So we can convert a polynomial of degree n from coefficients to
samples in O(n?) time. Lagrange’s formula can be used to convert the sample representation back
to the more familiar coefficient form. If we use the naive algorithms for adding and multiplying
polynomials (in coefficient form), this conversion takes O(n®) time.

We can improve the cubic running time by observing that both conversion problems boil
down to computing the product of a matrix and a vector. The explanation will be slightly simpler
if we assume the polynomial has degree n — 1, so that n is the number of coefficients or samples.
Fix a sequence xg, Xy, ..., X,_; of sample positions, and let V be the n x n matrix where v;; = x{
(indexing rows and columns from O to n —1):

2 . n—1
1 xg xg Xg
2 .. n—1
1 x X3 X3
v=|1 x, x§ xg_l
2 n—1
|1 Xpa X, Xp—1
The matrix V is called a Vandermonde matrix. The vector of coefficients d = (ay,a;,...,a,—1)
and the vector of sample values ¥ = (yq, Y1,---,Yn—1) are related by the matrix equation
Vda=y,
or in more detail,
i 2 n-17 T T i T
1 xq X Xg ag Yo
2 n—1
1 x; X7 Xy a; Y1
2 n—1
1 x4 x5 x5 ay | =1 ¥a
2 n—1
_1 Xn—1 xn_1 Xn_l_ _an—l_ _.Vn—l_

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

Given this formulation, we can clearly transform any coefficient vector d into the corresponding
sample vector y in O(n?) time.

Conversely, if we know the sample values y, we can recover the coefficients by solving a
system of n linear equations in n unknowns, which can be done in O(n®) time using Gaussian
elimination.® But we can speed this up by implicitly hard-coding the sample positions into the
algorithm, To convert from samples to coefficients, we can simply multiply the sample vector by
the inverse of V, again in O(n?) time.

i=Vv7ly
Computing V! would take O(n®) time if we had to do it from scratch using Gaussian elimination,
but because we fixed the set of sample positions in advance, the matrix V! can be hard-coded
directly into the algorithm.*

So we can convert from coefficients to samples and back in O(n?) time. At first lance, this
result seems pointless; we can already add, multiply, or evaluate directly in either representation
in O(n?) time, so why bother? But there’s a degree of freedom we haven’t exploited—We get to
choose the sample positions! Our conversion algorithm is slow only because we’re trying to be
too general. If we choose a set of sample positions with the right recursive structure, we can
perform this conversion more quickly.

2.4 Divide and Conquer

Any polynomial of degree at most n —1 can be expressed as a combination of two polynomials of
degree at most (n/2) —1 as follows:

p(x) = peven(xz) +x- podd(xz)-

The coefficients of pe,., are just the even-degree coefficients of p, and the coefficients of p,qq
are just the odd-degree coefficients of p. Thus, we can evaluate p(x) by recursively evaluating
Peven(x?) and p,4q(x?) and performing O(1) additional arithmetic operations.

Now call a set X of n values collapsing if either of the following conditions holds:

* X has one element.
* The set X? = {xz | xeX } has exactly n/2 elements and is (recursively) collapsing.

Clearly the size of any collapsing set is a power of 2. Given a polynomial p of degree n—1, and a
collapsing set X of size n, we can compute the set {p(x) | x € X} of sample values as follows:

1. Recursively compute {peyen(x?) | x € X} = {peven(y) | ¥ € X2}
2. Recursively compute {pogq(x?) | x € X} = {poaa(y) | ¥ € X2}
3. For each x € X, compute p(x) = Peven(X?) + X - Poga(x?).

The running time of this algorithm satisfies the familiar recurrence T(n) = 2T(n/2) + ©(n),
which as we all know solves to T(n) = ©(nlogn).

3In fact, Lagrange’s formula is just a special case of Cramer’s rule for solving linear systems.

4Actually, it is possible to invert an n x n matrix in o(n®) time, using fast matrix multiplication algorithms that
closely resemble Karatsuba’s sub-quadratic divide-and-conquer algorithm for integer/polynomial multiplication. On
the other hand, my numerical-analysis colleagues have reasonable cause to shoot me in the face for daring to suggest,
even in passing, that anyone actually invert a matrix at all, ever.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

Great! Now all we need is a sequence of arbitrarily large collapsing sets. The simplest method
to construct such sets is just to invert the recursive definition: If X is a collapsible set of size n
that does not contain the number 0, then X = {£4/x | x € X} is a collapsible set of size 2n. This
observation gives us an infinite sequence of collapsible sets, starting as follows:>

X, :={1}
X, :={1, -1}
X, :={1, -1, i, —i}

VI V3 V3 VI VI 3 Q+ﬁi}
2 2 2 2

Xg:=11, =1, i, =i, =+ =i, — et .S
2 27 2 2

2.5 The Discrete Fourier Transform

For any n, the elements of X,, are called the complex nth roots of unity; these are the roots of
the polynomial x" —1 = 0. These n complex values are spaced exactly evenly around the unit
circle in the complex plane. Every nth root of unity is a power of the primitive nth root

; 2r .. 2w
w, = e?™/" = cos == +isin =—.
n n

A typical nth root of unity has the form
i 2 2
Wy = e@mi/mk — cog (Tﬂ: k) +isin (% k) .

These complex numbers have several useful properties for any integers n and k:

* There are exactly n different nth roots of unity: coﬁ = wﬁm(’d "
* If n is even, then w ™2 = —wk; in particular, @¥/? = —w? = —1.

1/ wﬁ = a);k =wk= (@,)¥, where the bar represents complex conjugation: a + bi = a—bi
ok o .
* w, = wy, . Thus, every nth root of unity is also a (kn)th root of unity.

These properties imply immediately that if n is a power of 2, then the set of all nth roots of unity
is collapsible!

If we sample a polynomial of degree n — 1 at the nth roots of unity, the resulting list of
sample values is called the discrete Fourier transform of the polynomial (or more formally, of its
coefficient vector). Thus, given an array P[0..n— 1] of coefficients, its discrete Fourier transform
is the vector P*[0..n— 1] defined as follows:

n—1
P*[j]:=p(w)) =D P[k]- wi*
k=0

5In this lecture, i always represents the square root of —1. Computer scientists are used to thinking of i as an
integer index into a sequence, an array, or a for-loop, but we obviously can’t do that here. The physicist’s habit of
using j = v/—1 just delays the problem (How do physicists write quaternions?), and typographical tricks like I or i or
Mathematica’s 1 are just stupid.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

As we already observed, the fact that sets of roots of unity are collapsible implies that we can
compute the discrete Fourier transform in O(nlogn) time. The resulting algorithm, called the
fast Fourier transform, was popularized by Cooley and Tukey in 1965.¢ The algorithm assumes
that n is a power of two; if necessary, we can just pad the coefficient vector with zeros.

FFT(P[0..n—1]):
ifn=1
return P

forj—0ton/2—1
U[j] < P[2]j]
V[jl< P[2j+1]

U* « FFT(U[0..n/2—1])

V* « FFT(V[0..n/2—1])

W, — cos(%”) +isin(27“)

w1

forj—0ton/2—1

P*[j] < U jl+w-V*j]
P*[j+n/2] «U*[j]—w-V*[j]
w—w-w,

return P*[0..n—1]

Minor variants of this divide-and-conquer algorithm were previously described by Good
in 1958, by Thomas in 1948, by Danielson and Lanczos in 1942, by Stumpf in 1937, by Yates
in 1932, and by Runge in 1903; some special cases were published even earlier by Everett in
1860, by Smith in 1846, and by Carlini in 1828. But the algorithm, in its full modern recursive
generality, was first used by Gauss around 1805 for calculating the periodic orbits of asteroids
from a finite number of observations. In fact, Gauss’s recursive algorithm predates even Fourier’s
introduction of harmonic analysis by two years. So, of course, the algorithm is universally called
the Cooley-Tukey algorithm. Gauss’s work built on earlier research on trigonometric interpolation
by Bernoulli, Lagrange, Clairaut, and Euler; in particular, the first explicit description of the
discrete “Fourier” transform was published by Clairaut in 1754, more than half a century before
Fourier’s work. Hooray for Stigler’s Law!”

2.6 Inverting the FFT

We also need to recover the coefficients of the product from the new sample values. Recall that
the transformation from coefficients to sample values is linear; the sample vector is the product
of a Vandermonde matrix V and the coefficient vector. For the discrete Fourier transform, each

6Tukey apparently studied the algorithm to help detect Soviet nuclear tests without actually visiting Soviet nuclear
facilities, by interpolating off-shore seismic readings. Without his rediscovery, the nuclear test ban treaty would never
have been ratified, and we’d all be speaking Russian, or more likely, whatever language radioactive glass speaks.

7Lest anyone believe that Stigler’s Law has treated Gauss unfairly, remember that “Gaussian elimination” was not
discovered by Gauss; the algorithm was not even given that name until the mid-2o0th century! Elimination became
the standard method for solving systems of linear equations in Europe in the early 1700s, when it appeared in an
influential algebra textbook by Isaac Newton (published over his objections; he didn’t want anyone to think it was
his latest research). Although Newton apparently (and perhaps correctly) believed he had invented the elimination
method, it actually appears in several earlier works, the oldest of which the eighth chapter of the Chinese manuscript
The Nine Chapters of the Mathematical Art. The authors and precise age of the Nine Chapters are unknown, but
commentary written by Liu Hui in 263CE claims that the text was already several centuries old. It was almost certainly
not invented by a Chinese emperor named Fast.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

entry in V is an nth root of unity; specifically,

ij = (J){:lk
for all integers j and k. Thus,
1 1 1 1 1]
1 w, a)ﬁ wﬁ wz_l
V- 1 corzl a)f1 wg wrzl(”_l)
1 wi wg wz wi(”_l)
1 wﬁ_l wi("_l) wi(n_l) ... wfl”‘l)Z |

To invert the discrete Fourier transform, converting sample values back to coefficients, we
just have to multiply P* by the inverse matrix V~!. The following amazing fact implies that this
is almost the same as multiplying by V itself:

Claim: V''=V/n

Proof: We just have to show that M = V'V is the identity matrix scaled by a factor of n. We can
compute a single entry in M as follows:

n—1
— 1tk = jl—lk _ —ky!
mj = E wl o E w! E (0)])
[=0 =0

Ifj=k, thean k—wo—l,so

In other words, if W = V™! then wj, =Vj/n=wy /n= ., /n. What this means for us
computer scientists is that any algorithm for computing the discrete Fourier transform can be
easily modified to compute the inverse transform as well.

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

INVERSEFFT(P*[0..n—1]):
ifn=1
return P

forj—0Oton/2—1

U*[j] < P*[2j]

Vi[jle P2j+1]
U < INVERSEFFT(U[0..n/2—1])
V « INVERSEFFT(V[0..n/2—1])
@, < cos(3)—isin(%E)
w1

forj—0Oton/2—1

P[j] <2(U[jl+w-V[jD
P[j+n/2] «2(U[j]— - V[j])
W — w-w,

return P[0..n—1]

2.7 Fast Polynomial Multiplication

Finally, given two polynomials p and g, each represented by an array of coefficients, we can
multiply them in ©(nlogn) arithmetic operations as follows. First, pad the coefficient vectors
and with zeros until the size is a power of two greater than or equal to the sum of the degrees.
Then compute the DFTs of each coefficient vector, multiply the sample values one by one, and
compute the inverse DFT of the resulting sample vector.

FFTMuLrtipiy(P[0..n—1],Q[0..m—1]):

£ —[lg(n+m)]

for jento2/—1
P[jl<o0

for j«—mto2f—1
Q[jl<0

P* «— FFT(P)

Q* < FFT(Q)

forj<—0to2f—1
R[jl<P[jl-Q'[J]

return INVERSEFFT(R*)

2.8 Inside the FFT

FFTs are often implemented in hardware as circuits. To see the recursive structure of the circuit,
let’s connect the top-level inputs and outputs to the inputs and outputs of the recursive calls. On
the left we split the input P into two recursive inputs U and V. On the right, we combine the
outputs U* and V* to obtain the final output P*.

If we expand this recursive structure completely, we see that the circuit splits naturally into
two parts. The left half computes the bit-reversal permutation of the input. To find the position
of P[k] in this permutation, write k in binary, and then read the bits backward. For example,
in an 8-element bit-reversal permutation, P[3] = P[011,] ends up in position 6 = 110,. The
right half of the FFT circuit is a butterfly network. Butterfly networks are often used to route
between processors in massively-parallel computers, because they allow any two processors to
communicate in only O(logn) steps.

Algorithms

Lecture 2: Fast Fourier Transforms [Fa’14]

Bit-reversal permutation Butterfly network

W/ R e R @/
W
i
M
A
A\
Wi
Vi
W
i
n
[DX /A

&
&
*

W/
WL
W/

X K X

X
] P P <

<
¥

[\
/AN
/A

The recursive structure of the FFT algorithm.

Exercises

1. For any two sets X and Y of integers, the Minkowski sum X + Y is the set of all pairwise
sums {x+y|xeX,yeY}.

@

(b)

Describe an analyze and algorithm to compute the number of elements in X +Y in
O(n?logn) time. [Hint: The answer is not always n2.]

Describe and analyze an algorithm to compute the number of elements in X + Y in
O(M log M) time, where M is the largest absolute value of any element of X UY.
[Hint: What’s this lecture about?]

2. Suppose we are given a bit string B[1..n]. A triple of distinct indices 1 <i<j<k<nis
called a well-spaced triple in B if B[i]=B[j]=B[k]=1and k—j =j—i.

@

(b)

()]

(b)

(o)

Describe a brute-force algorithm to determine whether B has a well-spaced triple in
0(n?) time.

Describe an algorithm to determine whether B has a well-spaced triple in O(nlogn)
time. [Hint: Hint.]

Describe an algorithm to determine the number of well-spaced triples in B in O(nlogn)
time.

Describe an algorithm that determines whether a given set of n integers contains two
elements whose sum is zero, in O(nlogn) time.

Describe an algorithm that determines whether a given set of n integers contains
three elements whose sum is zero, in O(n?) time.

Now suppose the input set X contains only integers between —10000n and 10000n.
Describe an algorithm that determines whether X contains three elements whose
sum is zero, in O(nlogn) time. [Hint: Hint.]

10

Algorithms Lecture 2: Fast Fourier Transforms [Fa’14]

4. Describe an algorithm that applies the bit-reversal permutation to an array A[1..n] in O(n)
time when n is a power of 2.

| BIT- | < |BTI- |

| REVERSAL | <=> | RRVAESEL |

| BUTTERFLYNETWORK | <=> | BYEWTEFRUNROTTLK |

THISISTHEBITREVERSALPERMUTATION! | — |TREUIPRIIAIATRVNHSBTSEEOSLTTHME!

5. The FFT algorithm we described in this lecture is limited to polynomials with 2¥ coefficients
for some integer k. Of course, we can always pad the coefficient vector with zeros to force
it into this form, but this padding artificially inflates the input size, leading to a slower
algorithm than necessary.

Describe and analyze a similar DFT algorithm that works for polynomials with 3*
coefficients, by splitting the coefficient vector into three smaller vectors of length 371,
recursively computing the DFT of each smaller vector, and correctly combining the results.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

11

Algorithms Lecture 3: Backtracking [Fa’14]

'Tis a lesson you should heed,
Try, try again;
If at first you don’t succeed,
Try, try again;
Then your courage should appear,
For, if you will persevere,
You will conquer, never fear;
Try, try again.
— Thomas H. Palmer, The Teacher’s Manual: Being an Exposition
of an Efficient and Economical System of Education
Suited to the Wants of a Free People (1840)

| dropped my dinner, and ran back to the laboratory. There, in my excitement,
| tasted the contents of every beaker and evaporating dish on the table. Luckily
for me, none contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

To resolve the question by a careful enumeration of solutions via trial and error,
continued Gauss, would take only an hour or two. Apparently such inelegant
work held little attraction for Gauss, for he does not seem to have carried it out,
despite outlining in detail how to go about it.

— Paul Campbell, “Gauss and the Eight Queens Problem:
A Study in Miniature of the Propagation of Historical Error” (1977)

3 Backtracking

In this lecture, I want to describe another recursive algorithm strategy called backtracking.
A backtracking algorithm tries to build a solution to a computational problem incrementally.
Whenever the algorithm needs to decide between multiple alternatives to the next component of
the solution, it simply tries all possible options recursively.

3.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed by
German chess enthusiast Max Bezzel in 1848 (under his pseudonym “Schachfreund”) for the
standard 8 x 8 board and by Francois-Joseph Eustache Lionnet in 1869 for the more general n x n
board. The problem is to place n queens on an n x n chessboard, so that no two queens can
attack each other. For readers not familiar with the rules of chess, this means that no two queens
are in the same row, column, or diagonal.

Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row.
So we will represent our possible solutions using an array Q[1..n], where Q[i] indicates which
square in row i contains a queen, or 0 if no queen has yet been placed in row i. To find a
solution, we put queens on the board row by row, starting at the top. A partial solution is an
array Q[1..n] whose first r — 1 entries are positive and whose last n —r + 1 entries are all zeros,
for some integer r.

The following recursive algorithm, essentially due to Gauss (who called it “methodical
groping”), recursively enumerates all complete n-queens solutions that are consistent with a
given partial solution. The input parameter r is the first empty row. Thus, to compute all
n-queens solutions with no restrictions, we would call RECURSIVENQUEENS(Q[1..n], 1).

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 3: Backtracking [Fa’14]

W

W

One solution to the 8 queens problem, represented by the array [4,7,3,8,2,5,1,6]

RECURSIVENQUEENS(Q[1..n],r):
ifr=n+1
print Q
else
forje—1ton
legal < TRUE
fori—1tor—1
if(Qli]=j)or(Qlil]=j+r—1or(Qli]=j—r+i)

legal < FALSE

if legal
Qlrl«j
RECURSIVENQUEENS(Q[1..n],r + 1)

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated
using a recursion tree. The root of the recursion tree corresponds to the original invocation of
the algorithm; edges in the tree correspond to recursive calls. A path from the root down to
any node shows the history of a partial solution to the n-Queens problem, as queens are added
to successive rows. The leaves correspond to partial solutions that cannot be extended, either
because there is already a queen on every row, or because every position in the next empty row
is in the same row, column, or diagonal as an existing queen. The backtracking algorithm simply
performs a depth-first traversal of this tree.

3.2 Game Trees

Consider the following simple two-player game played on an n x n square grid with a border of
squares; let’s call the players Horatio Fahlberg-Remsen and Vera Rebaudi.! Each player has n
tokens that they move across the board from one side to the other. Horatio’s tokens start in the
left border, one in each row, and move to the right; symmetrically, Vera’s tokens start in the top
border, one in each column, and move down. The players alternate turns. In each of his turns,
Horatio either moves one of his tokens one step to the right into an empty square, or jumps one of
his tokens over exactly one of Vera’s tokens into an empty square two steps to the right. However,
if no legal moves or jumps are available, Horatio simply passes. Similarly, Vera either moves or
jumps one of her tokens downward in each of her turns, unless no moves or jumps are possible.
The first player to move all their tokens off the edge of the board wins.

T don’t know what this game is called, or even if I'm remembering the rules correctly; I learned it (or something
like it) from Lenny Pitt, who recommended playing it with fake-sugar packets at restaurants. Constantin Fahlberg and
Ira Remsen synthesized saccharin for the first time in 1878, while Fahlberg was a postdoc in Remsen’s lab investigating
coal tar derivatives. In 1900, Ovidio Rebaudi published the first chemical analysis of ka’a he’é, a medicinal plant
cultivated by the Guarani for more than 1500 years, now more commonly known as Stevia rebaudiana.

Algorithms Lecture 3: Backtracking [Fa’14]

W W W W
W W W W W W
W W W oY W W
W W W W
W W | W
L w W W
‘g"l I\&’
Wi oY
W w
W W
The complete recursion tree for our algorithm for the 4 queens problem.
DOO® DOO® 0O DO O
e Q ©) e o ®
&) &) OO QOIS OS)
e e e e S
©O) @ D
SO S &) €] ©)
OIS DD OIRCS 00[0)S) QOO
S @ S S S
©) Q S ©) ©)
0]O)C) O]O)C) D, 12 O © Q@
- © ©) 9 O Q ® QOO
©) O O O O
&) S S Q
e e e S
@0O® SINCO) Q® e
O QD 0[O OO®

Vera wins the 3 x 3 fake-sugar-packet game.

Algorithms Lecture 3: Backtracking [Fa’14]

We can use a simple backtracking algorithm to determine the best move for each player at
each turn. The state of the game consists of the locations of all the pieces and the player whose
turn it is. We recursively define a game state to be good or bad as follows:

* A game state is bad if all the opposing player’s tokens have reached their goals.

* A game state is good if the current player can move to a state that is bad for the opposing
player.

* A configuration is bad if every move leads to a state that is good for the opposing player.

This recursive definition immediately suggests a recursive backtracking algorithm to determine
whether a given state of the game is good or bad. Moreover, for any good state, the backtracking
algorithm finds a move leading to a bad state for the opposing player. Thus, by induction, any
player that finds the game in a good state on their turn can win the game, even if their opponent
plays perfectly; on the other hand, starting from a bad state, a player can win only if their
opponent makes a mistake.

QO[®

OO® OO® QOO
© € €
€ ©) €
€ € ©)
[0©) @, [® [0/©) QO [CIN©! QO QO [CIN©! (0o
© Q@ o ® €le e [® € [@ €l o [® € [@
€l € € € € [€ € € €
€ € € € € € € € [

The first two levels of the fake-sugar-packet game tree.

All computer game players are ultimately based on this simple backtracking strategy. However,
since most games have an enormous number of states, it is not possible to traverse the entire
game tree in practice. Instead, game programs employ other heuristics? to prune the game tree,
by ignoring states that are obviously good or bad (or at least obviously better or worse that other
states), and/or by cutting off the tree at a certain depth (or ply) and using a more efficient
heuristic to evaluate the leaves.

3.3 Subset Sum

Let’s consider a more complicated problem, called SuBseTSum: Given a set X of positive integers
and target integer T, is there a subset of elements in X that add up to T? Notice that there
can be more than one such subset. For example, if X = {8,6,7,5,3,10,9} and T = 15, the
answer is TRUE, thanks to the subsets {8, 7} or {7,5,3} or {6,9} or {5,10}. On the other hand,
if X ={11,6,5,1,7,13,12} and T = 15, the answer is FALSE.

There are two trivial cases. If the target value T is zero, then we can immediately return
TRUE, because empty set is a subset of every set X, and the elements of the empty set add up to
zero.? On the other hand, if T <0, or if T # 0 but the set X is empty, then we can immediately
return FALSE.

2A heuristic is an algorithm that doesn’t work.
3There’s no base case like the vacuous base case!

* kK

Algorithms Lecture 3: Backtracking [Fa’14]

For the general case, consider an arbitrary element x € X. (We've already handled the case
where X is empty.) There is a subset of X that sums to T if and only if one of the following
statements is true:

* There is a subset of X that includes x and whose sum is T.

¢ There is a subset of X that excludes x and whose sum is T.
In the first case, there must be a subset of X \ {x} that sums to T — x; in the second case, there
must be a subset of X \ {x} that sums to T. So we can solve SUBSETSuM(X, T) by reducing it

to two simpler instances: SUBSETSUM(X \ {x}, T —x) and SuBseTSum(X \ {x}, T). Here’s how
the resulting recusive algorithm might look if X is stored in an array.

SuBseTSuM(X[1..n],T):
ifT=0
return TRUE
elseif T<0orn=0
return FALSE

else

return (SUBSETSUM(X[l .n—1],T) V SuBserSum(X[1..n—1], T —X[n]))

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the
elements of the empty subset sum to T, so TRUE is the correct output. Otherwise, if T is negative
or the set X is empty, then no subset of X sums to T, so FALSE is the correct output. Otherwise, if
there is a subset that sums to T, then either it contains X[n] or it doesn’t, and the Recursion
Fairy correctly checks for each of those possibilities. Done.

The running time T (n) clearly satisfies the recurrence T(n) < 2T(n—1) + O(1), which we
can solve using either recursion trees or annihilators (or just guessing) to obtain the upper bound
T(n) = 0O(2"). In the worst case, the recursion tree for this algorithm is a complete binary tree
with depth n.

Here is a similar recursive algorithm that actually constructs a subset of X that sums to T, if
one exists. This algorithm also runs in O(2") time.

CoNsTRUCTSUBSET(X[1..n], T):
ifT=0
return &
fT<0orn=0
return NONE

Y « CoNsTRUCTSUBSET(X[1..n—1],T)
if Y # NoNE
return Y

Y « CoNsTRUCTSUBSET(X[1..n—1],T —X[n])

if Y # NoNE
return Y U {X[n]}

return NONE

3.4 The General Pattern

Find a small choice whose correct answer would reduce the problem size. For each possible
answer, temporarily adopt that choice and recurse. (Don't try to be clever about which choices
to try; just try them all.) The recursive subproblem is often more general than the original
target problem; in each recursive subproblem, we must consider only solutions that are
consistent with the choices we have already made.

Algorithms Lecture 3: Backtracking [Fa’14]

3.5 NFA acceptance

Recall that a nondeterministic finite-state automaton, or NFA, can be described as a directed
graph, whose edges are called states and whose edges have labels drawn from a finite set X called
the alphabet. Every NFA has a designated start state and a subset of accepting states. Any walk in
this graph has a label, which is a string formed by concatenating the labels of the edges in the
walk. A string w is accepted by an NFA if and only if there is a walk from the start state to one of
the accepting states whose label is w.

More formally (or at least, more symbolically), an NFA consists of a finite set Q of states, a
start state s € Q, a set of accepting states A C Q, and a transition function 6: Q x X — 2Q. We
recursively extend the transition function to strings by defining

{q} ifw=e,
6%(g,w) = U 6*(r,x) ifw=ax.
reé(q,a)

The NFA accepts string w if and only if the set *(s, w) contains at least one accepting state.

We can express this acceptance criterion more directly as follows. We define a boolean
function Accepts?(q, w), which is TRUE if the NFA would accept string w if we started in state g,
and FaLse otherwise. This function has the following recursive definition:

TRUE ifw=eandgeA

F if w= dgeA
Accepts?(q,w) := 'ALSE fw=c¢andq

\/ Accepts?(r,x) ifw=ax
reé(q,a)

The NFA accepts w if and only if Accepts?(s, w) = TRUE.

In the magical world of non-determinism, we can imagine that the NFA always magically makes
the right decision when faces with multiple transitions, or perhaps spawns off an independent
parallel thread for each possible choice. Alas, real computers are neither clairvoyant nor (despite
the increasing use of multiple cores) infinitely parallel. To simulate the NFA’s behavior directly,
we must recursively explore the consequences of each choice explicitly.

The recursive definition of Accepts? translates directly into the following recursive backtracking
algorithm. Here, the transition function & and the accepting states A are represented as global
boolean arrays, where 6[q,a,r] = TruE if and only if r € 6(q, a), and A[q] = TruE if and only
if g €A

AcceprTs?(q,w[l..n]):
ifn=0
return A[q]

for all states r
if 6[q,w[1],r] and AccepTs?(r,w[2..1n])
return TRUE

return FALSE

To determine whether the NFA accepts a string w, we call AcCEPTS?(5,A,s, w).
The running time of this algorithm satisfies the recursive inequailty T(n) < O(|Q|)- T(n—1),
which immediately implies that T(n) = O(|Q|™).

Algorithms Lecture 3: Backtracking [Fa’14]

3.6 Longest Increasing Subsequence

Now suppose we are given a sequence of integers, and we want to find the longest subsequence
whose elements are in increasing order. More concretely, the input is an array A[1..n] of
integers, and we want to find the longest sequence of indices 1 < i; <i, < ---i; < n such that
Ali;] <Alij44] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the
kinds of objects we're playing with: sequences and subsequences.

A sequence of integers is either empty
or an integer followed by a sequence of integers.

This definition suggests the following strategy for devising a recursive algorithm. If the input
sequence is empty, there’s nothing to do. Otherwise, we only need to figure out what to do with
the first element of the input sequence; the Recursion Fairy will take care of everything else. We
can formalize this strategy somewhat by giving a recursive definition of subsequence (using array
notation to represent sequences):

The only subsequence of the empty sequence is the empty sequence.

A subsequence of A[1..n] is either a subsequence of A[2..n]
or A[1] followed by a subsequence of A[2..n].

We’re not just looking for just any subsequence, but a longest subsequence with the property
that elements are in increasing order. So let’s try to add those two conditions to our definition.
('ll omit the familiar vacuous base case.)

The LIS of A[1..n] is
either the LIS of A[2..n]
or A[1] followed by the LIS of A[2..n] with elements larger than A[1],
whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining the object ‘longest
increasing subsequence’ in terms of the slightly different object ‘longest increasing subsequence
with elements larger than x’, which we haven’t properly defined yet. Fortunately, this second
object has a very similar recursive definition. (Again, 'm omitting the vacuous base case.)

If A[1] < x, the LIS of A[1..n] with elements larger than x is
the LIS of A[2..n] with elements larger than x.

Otherwise, the LIS of A[1..n] with elements larger than x is
either the LIS of A[2..n] with elements larger than x
or A[1] followed by the LIS of A[2..n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest
increasing subsequence with elements larger than —oo. Rewriting this recursive definition into
pseudocode gives us the following recursive algorithm.

* Kk

Algorithms Lecture 3: Backtracking [Fa’14]

LISB1GGER(prev,A[1..n]):
ifn=0
return O
else
LIS(A[1..n]): max < LISBIGGER(prev,A[2..1n])
return LISBIGGER(—00,A[1..n]) if A[1] > prev
L «— 1+ LISBIGGER(A[1],A[2..1])
if L > max
max < L
return max

The running time of this algorithm satisfies the recurrence T(n) < 2T(n— 1) + O(1), which as
usual implies that T(n) = O(2"). We really shouldn’t be surprised by this running time; in the
worst case, the algorithm examines each of the 2" subsequences of the input array.

The following alternative strategy avoids defining a new object with the “larger than x”
constraint. We still only have to decide whether to include or exclude the first element A[1]. We
consider the case where A[1] is excluded exactly the same way, but to consider the case where
A[1] is included, we remove any elements of A[2..n] that are larger than A[1] before we recurse.
This new strategy gives us the following algorithm:

LIS(A[1..n]):
ifn=0
Fiter(A[1..n], x): return 0
%o(r_i1<— lton else
if ALi] > x max < LIS(prev,A[2..n])
. . . L «—1+LIS(A[1],FiLTER(A[2..n],A[1
LT AL e+l L 1+ LISGA[1] Fruren(A[2.] AT1D)
return B[1..j] o L
return max

The FILTER subroutine clearly runs in O(n) time, so the running time of LIS satisfies the
recurrence T(n) < 2T(n— 1) + O(n), which solves to T(n) < O(2") by the annihilator method.
This upper bound pessimistically assumes that FILTER never actually removes any elements;
indeed, if the input sequence is sorted in increasing order, this assumption is correct.

3.7 Optimal Binary Search Trees

Retire this example? It’s not a bad example, exactly—it's infinitely better than the execrable
matrix-chain multiplication problem from Aho, Hopcroft, and Ullman—but it’s not the best first
example of tree-like backtracking. Minimum-ink triangulation of convex polygons is both more
intuitive (geometry FTW!) and structurally equivalent. CFG parsing and regular expression
matching (really just a special case of parsing) have similar recursive structure, but are a bit
more complicated.

Our next example combines recursive backtracking with the divide-and-conquer strategy.
Recall that the running time for a successful search in a binary search tree is proportional to the
number of ancestors of the target node.* As a result, the worst-case search time is proportional
to the depth of the tree. Thus, to minimize the worst-case search time, the height of the tree
should be as small as possible; by this metric, the ideal tree is perfectly balanced.

4An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor of v is either
the parent of v or a proper ancestor of the parent of v.

Algorithms Lecture 3: Backtracking [Fa’14]

In many applications of binary search trees, however, it is more important to minimize the
total cost of several searches rather than the worst-case cost of a single search. If x is a more
‘popular’ search target than y, we can save time by building a tree where the depth of x is smaller
than the depth of y, even if that means increasing the overall depth of the tree. A perfectly
balanced tree is not the best choice if some items are significantly more popular than others. In
fact, a totally unbalanced tree of depth £2(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of keys
A[1..n] and an array of corresponding access frequencies f[1..n]. Our task is to build the
binary search tree that minimizes the total search time, assuming that there will be exactly f[i]
searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a good
recursive definition of the function we are trying to optimize! Suppose we are also given a binary
search tree T with n nodes. Let v; denote the node that stores A[i], and let r be the index of the
root node. Ignoring constant factors, the cost of searching for A[i] is the number of nodes on the
path from the root v, to v;. Thus, the total cost of performing all the binary searches is given by
the following expression:

n
Cost(T, f[1..n]) = Zf[i] - #nodes between v, and v;
i=1

Every search path includes the root node v,. If i < r, then all other nodes on the search path to
v; are in the left subtree; similarly, if i > r, all other nodes on the search path to v; are in the
right subtree. Thus, we can partition the cost function into three parts as follows:

r—1
Cost(T, f[1..n]) = Zf[i] - #nodes between left(v,) and v;
i=1

+ 2, £
i=1

n
+ Z f[i]- #nodes between right(v,) and v;

i=r+1

Now the first and third summations look exactly like our original expression (*) for Cost(T, f[1..n]).
Simple substitution gives us our recursive definition for Cost:

Cost(T, f[1..n]) = Cost(left(T), f[1..r —1]) + Zf[i] + Cost(right(T), f[r+1..n])

i=1

The base case for this recurrence is, as usual, n = 0; the cost of performing no searches in the
empty tree is zero.

Now our task is to compute the tree T, that minimizes this cost function. Suppose we
somehow magically knew that the root of T is v,. Then the recursive definition of Cost(T, f)
immediately implies that the left subtree left(T,,) must be the optimal search tree for the keys
A[1..r —1] and access frequencies f[1..r —1]. Similarly, the right subtree right(T,) must be
the optimal search tree for the keys A[r + 1..n] and access frequencies f[r + 1..n]. Once we
choose the correct key to store at the root, the Recursion Fairy automatically constructs
the rest of the optimal tree. More formally, let OptCost(f[1..n]) denote the total cost of the

Algorithms Lecture 3: Backtracking [Fa’14]

optimal search tree for the given frequency counts. We immediately have the following recursive
definition.

OptCost(f[l..n])=1I<nri£1n{0ptCost(f[1..r—1]) + Zf[i] + OptCost(f[r+1..n])}
== i=1

Again, the base case is OptCost(f[1..0]) = 0; the best way to organize no keys, which we will
plan to search zero times, is by storing them in the empty tree!

This recursive definition can be translated mechanically into a recursive algorithm, whose
running time T(n) satisfies the recurrence

T(n)=©(n)+ Y (T(k—1)+T(n—k)).

k=1

The ©(n) term comes from computing the total number of searches Z?:l flil.

Yeah, that’s one ugly recurrence, but it’s actually easier to solve than it looks. To transform it
into a more familiar form, we regroup and collect identical terms, subtract the recurrence for
T(n—1) to get rid of the summation, and then regroup again.

n—1
T(n)=6(n)+2) T(k)

k=0

n—2
T(n—1)=6(n—1)+2> T(k)
k=0
T(n)—T(n—1) = (1) +2T(n—1)
T(n)=3T(n—1)+06(1)

The solution T(n) = ©(3™) now follows from the annihilator method.
Let me emphasize that this recursive algorithm does not examine all possible binary search
trees. The number of binary search trees with n nodes satisfies the recurrence

n—1
N(n)= > (N(r—1)-N(n—r)),
r=1

which has the closed-from solution N(n) = ©(4"/+/n). Our algorithm saves considerable time
by searching independently for the optimal left and right subtrees. A full enumeration of binary
search trees would consider all possible pairings of left and right subtrees; hence the product in
the recurrence for N(n).

*3.8 CFG Parsing

Our final example is the parsing problem for context-free languages. Given a string w and
a context-free grammar G, does w belong to the language generated by G? Recall that a
context-free grammar over the alphabet % consists of a finite set I' of non-terminals (disjoint
from) and a finite set of production rules of the form A — w, where A is a nonterminal and w is
a string over L UT.

Real-world applications of parsing normally require more information than just a single bit.
For example, compilers require parsers that output a parse tree of the input code; some natural

10

Algorithms Lecture 3: Backtracking [Fa’14]

language applications require the number of distinct parse trees for a given string; others assign
probabilities to the production rules and then ask for the most likely parse tree for a given string.
However, once we have an algorithm for the decision problem, it it not hard to extend it to answer
these more general questions.

We define a boolean function Generates?: ¥* x I', where Generates?(A,x) = TRUE if and
only if x can be derived from A. At first glance, it seems that the production rules of the CFL
immediately give us a (rather complicated) recursive definition for this function; unfortunately,
there are a few problems.

* Consider the context-free grammar S — ¢ | SS | (S) that generates all properly balanced
strings of parentheses. The “obvious” recursive algorithm for Generates?(S,w) would
recursively check whether x € L(S) and y € L(S), for every possible partition w = x ® y,
including the trivial partition w = € * w. It follows that Generates?(S,w) calls itself, leading
to an infinite loop.

* Consider another grammar that includes the productions S - A, A — B, and B — S,
possibly among others. The “obvious” recursive algorithm for Generates?(S, w) must call
Generates?(A,w), which calls Generates?(B,w), which calls Generates?(S,w), and we are
again in an infinite loop.

To avoid these issues, we will make the simplifying assumption that our input grammar is in
Chomsky normal form. Recall that a CNF grammar has the following special structure:

* The starting non-terminal S does not appear on the right side of any production rule.
* The starting non-terminal S may have the production rule S — &.

* Every other production rule has the form A — BC (two non-terminals) or A — a (one
terminal).

In an earlier lecture note, I describe an algorithm to convert any context-free grammar into
Chomsky normal form. Unfortunately, I still haven’t introduced all the algorithmic tools you
might need to really understand that algorithm; fortunately, for purposes of this note, it’s enough
to know that such an algorithm exists.

With this simplifying assumption in place, the function Generates? now has a relatively
straightforward recursive definition.

TRUE if[x] <landA— x

F if [x| < 1and A
Generates?(A, x) = ALSE if [x| <1land A/ x

Generates?(B, y) A Generates?(C,z) otherwise
A—BC y*z=x

The first two cases take care of terminal productions A — a and the e-production S — ¢ (if the
grammar contains it). The notation A / x means that A — x is not a production rule in the given
grammar. In the generic case, for all production rules A — BC, and for all ways of splitting x
into a non-empty prefix y and a non-empty suffix z, we recursively check whether y € L(B) and
z € L(C). Because we pass strictly smaller strings in the second argument of these recursive calls,
every branch of the recursion tree eventually terminates.

This recursive definition translates mechanically into a recursive algorithm. To bound the
precise running time of this algorithm, we need to solve a system of mutually recursive functions,
one for each non-terminal, where the function for each non-terminal A depends on the number

11

Algorithms Lecture 3: Backtracking [Fa’14]

of production rules A — BC. For the sake of illustration, suppose each non-terminal has at most ¢
non-terminating production rules. Then the running time can be bounded by the recurrence

n—1 n—1
T(n) = €(m)+- > (T(k)+T(n—k)) = ©(n)+2¢- > T(k)
k=1 k=1

where the ©(n) term accounts for the overhead of splitting the input string in n different ways.
The same approach as our analysis of optimal binary search trees (difference transformation
followed by annihilators) implies the solution T(n) = ©((2¢ + 1)").

Exercises

1. (a) LetA[1..m]and B[1..n] be two arbitrary arrays. A common subsequence of A and B
is both a subsequence of A and a subsequence of B. Give a simple recursive definition
for the function Ics(A, B), which gives the length of the longest common subsequence
of A and B.

(b) LetA[1..m] and B[1..n] be two arbitrary arrays. A common supersequence of A and
B is another sequence that contains both A and B as subsequences. Give a simple
recursive definition for the function scs(A, B), which gives the length of the shortest
common supersequence of A and B.

(c) Call asequence X[1..n]oscillating if X[i] < X[i+1]foralleveni,and X[i] > X[i+1]
for all odd i. Give a simple recursive definition for the function los(A), which gives
the length of the longest oscillating subsequence of an arbitrary array A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length of
the shortest oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X[1..n] accelerating if 2 - X[i] < X[i —1]+X[i+ 1] for all i. Give
a simple recursive definition for the function Ixs(A), which gives the length of the
longest accelerating subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next two lecture notes!

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

12

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

Wouldn’t the sentence “l want to put a hyphen between the words Fish and
And and And and Chips in my Fish-And-Chips sign.” have been clearer if
quotation marks had been placed before Fish, and between Fish and and,
and and and And, and And and and, and and and And, and And and and,
and and and Chips, as well as after Chips?*

— Martin Gardner, Aha! Insight (1978)

*4 Efficient Exponential-Time Algorithms

In another lecture note, we discuss the class of NP-hard problems. For every problem in this
class, the fastest algorithm anyone knows has an exponential running time. Moreover, there
is very strong evidence (but alas, no proof) that it is impossible to solve any NP-hard problem
in less than exponential time—it’s not that we’re all stupid; the problems really are that hard!
Unfortunately, an enormous number of problems that arise in practice are NP-hard; for some of
these problems, even approximating the right answer is NP-hard.

Suppose we absolutely have to find the exact solution to some NP-hard problem. A polynomial-
time algorithm is almost certainly out of the question; the best running time we can hope for is
exponential. But which exponential? An algorithm that runs in O(1.5") time, while still unusable
for large problems, is still significantly better than an algorithm that runs in O(2") time!

For most NP-hard problems, the only approach that is guaranteed to find an optimal solution
is recursive backtracking. The most straightforward version of this approach is to recursively
generate all possible solutions and check each one: all satisfying assignments, or all vertex
colorings, or all subsets, or all permutations, or whatever. However, most NP-hard problems have
some additional structure that allows us to prune away most of the branches of the recursion
tree, thereby drastically reducing the running time.

4.1 3SAT

Let’s consider the mother of all NP-hard problems: 3SAT. Given a boolean formula in conjunctive
normal form, with at most three literals in each clause, our task is to determine whether any
assignment of values of the variables makes the formula true. Yes, this problem is NP-hard, which
means that a polynomial algorithm is almost certainly impossible. Too bad; we have to solve the
problem anyway.

The trivial solution is to try every possible assignment. We’ll evaluate the running time of our
3SAT algorithms in terms of the number of variables in the formula, so let’s call that n. Provided
any clause appears in our input formula at most once—a condition that we can easily enforce in
polynomial time—the overall input size is O(n®). There are 2" possible assignments, and we can
evaluate each assignment in O(n®) time, so the overall running time is 0(2"n?).

1If you ever decide to read this sentence out loud, be sure to pause briefly between ‘Fish and and’ and ‘and and
and And’, ‘and and and And’ and ‘and And and and’, ‘and And and and’ and ‘and and and And’, ‘and and and And’
and ‘and And and and’, and ‘and And and and’ and ‘and and and Chips’!

Did you notice the punctuation I carefully inserted between ‘Fish and and’ and ‘and’, ’and’ and ’and and and And’,
‘and and and And’ and ’and and and And’, ‘and and and And’ and ’and’, ’and’ and ‘and And and and’, ‘and And and
and’ and ‘and And and and’, ‘and And and and’ and ’and’, ’and’ and ‘and and and And’, ‘and and and And’ and ‘and
and and And’, ‘and and and And’ and ‘and’, ‘and’ and ‘and And and and’, ‘and And and and’ and ‘and’, ‘and’ and ‘and
And and and’, ‘and And and and’ and ‘and’, and ‘and’ and ‘and and and Chips’?

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

Since polynomial factors like n® are essentially noise when the overall running time is
exponential, from now on I'll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = n®D. For example, the trivial algorithm for 3SAT runs in time O(2" poly(n)).

We can make this algorithm smarter by exploiting the special recursive structure of 3CNF
formulas:

A 3CNF formula is either nothing
or a clause with three literals A a 3CNF formula

Suppose we want to decide whether some 3CNF formula ¢ with n variables is satisfiable. Of
course this is trivial if ® is the empty formula, so suppose

d=(xVyVz)Ad

for some literals x, y,z and some 3CNF formula &’. By distributing the A across the Vs, we can
rewrite & as follows:
d=(xAD)V(AD)V(zAP)

For any boolean formula ¥ and any literal x, let ¥|x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x A ¥ = x A ¥|x, which implies that

d=(x AN |X)V(yA®|y)V(zAd|2).

Thus, in any satisfying assignment for ®, either x is true and ®’|x is satisfiable, or y is true and
®’|y is satisfiable, or z is true and ®’|z is satisfiable. Each of the smaller formulas has at most
n— 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T(n) <3T(n—1) + poly(n),

whose solution is O(3" poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If ®'|x is not satisfiable, then x
must be false in any satisfying assignment for ®. So instead of recursively checking &’|y in the
second step, we can check the even simpler formula ®’|xy. Similarly, if '|xy is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
®’|x yz in the third step.

3sAT($):
ifo=0g
return TRUE
(xVYVz)Ad « &
if 3saT(®|x)
return TRUE
if 3saT(®|Xy)
return TRUE
return 3saT(®|xyz)

The running time off this algorithm obeys the recurrence

T(n)=T(n—1)+T(n—2)+ T(n—3) + poly(n),

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us
the solution

T(n) = O(A" poly(n)) =| 0(1.83928675522")

where A &~ 1.83928675521... is the largest root of the characteristic polynomial r3 —r2 —r — 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula & but its negation X does not. It’s not
hard to prove (hint, hint) that if & has a satisfying assignment, then it has a satisfying assignment
where every pure literal is true. If = (x V y V z) A ® has no pure literals, then some in &
contains the literal x, so we can write

d=(xVyVz)A(XVuVv)Ad

for some literals u and v (each of which might be y, y, z, or). It follows that the first recursive
formula ®|x has contains the clause (u V v). We can recursively eliminate the variables u and v
just as we tested the variables y and x in the second and third cases of our previous algorithm:

Blx =(wVV)IAY|x =WuAd|xu)V(vAY|xiv).

Here is our new faster algorithm:

3sAT($):
ifo=0p
return TRUE
if ® has a pure literal x
return 3saT(®|x)

(XxVYyVz2)A(XVUVVIAD «— @
if 3saT(®|xu)
return TRUE
if 3saT(®|xuv)
return TRUE
if 3saT(®|xy)
return TRUE
return 3saT(®|xyz)

The running time T(n) of this new algorithm satisfies the recurrence
T(n) =2T(n—2)+2T(n—3) + poly(n),

and the annihilator method implies that

T(n) = O(u" poly(n)) =| 0(1.76929235425™)

where u ~ 1.76929235424 . .. is the largest root of the characteristic polynomial r3 — 2r — 2.
Naturally, this approach can be extended much further; since 1998, at least fifteen different

3SAT algorithms have been published, each improving the running time by a small amount. As of

2010, the fastest deterministic algorithm for 3SAT runs in O(1.33334") time2, and the fastest

2Robin A. Moser and Dominik Scheder. A full derandomization of Schoning’s k-SAT algorithm. ArXiv:1008.4067,
2010.

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

randomized algorithm runs in 0(1.32113") expected time3, but there is good reason to believe
that these are not the best possible.

4.2 Maximum Independent Set

Now suppose we are given an undirected graph G and are asked to find the size of the largest
independent set, that is, the largest subset of the vertices of G with no edges between them. Once
again, we have an obvious recursive algorithm: Try every subset of nodes, and return the largest
subset with no edges. Expressed recursively, the algorithm might look like this.

MaxiMUMINDSETSIZE(G):

ifG=0o
return O

else
v « any node in G
withy < 1 + MAXIMUMINDSETSIZE(G \ N(v))
withoutv <« MaxiIMUMINDSETSIZE(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: The set containing v and all of its neighbors. Our
algorithm is exploiting the fact that if an independent set contains v, then by definition it contains
none of v’s neighbors. In the worst case, v has no neighbors, so G\ {v} = G\ N(v). Thus, the
running time of this algorithm satisfies the recurrence T (n) = 2T (n—1)+poly(n) = O(2" poly(n)).
Surprise, surprise.

This algorithm is mirroring a crude recursive upper bound for the number of maximal
independent sets in a graph; an independent set is maximal if every vertex in G is either
already in the set or a neighbor of a vertex in the set. If the graph is non-empty, then every
maximal independent set either includes or excludes each vertex. Thus, the number of maximal
independent sets satisfies the recurrence M(n) < 2M(n — 1), with base case M(1) = 1. The
annihilator method gives us M(n) < 2" — 1. The only subset that we aren’t counting with this
upper bound is the empty set!

We can speed up our algorithm by making several careful modifications to avoid the worst
case of the running-time recurrence.

 If v has no neighbors, then N(v) = {v}, and both recursive calls consider a graph with
n—1 nodes. But in this case, v is in every maximal independent set, so one of the recursive
calls is redundant. On the other hand, if v has at least one neighbor, then G \ N(v) has at
most n — 2 nodes. So now we have the following recurrence.

T(n—1)

= 0(1.618033 5"
T(n—1)+T(n—2)} (803398875")

T (n) < O(poly(n)) + max {

The upper bound is derived by solving each case separately using the annihilator method
and taking the larger of the two solutions. The first case gives us T(n) = O(poly(n)); the
second case yields our old friends the Fibonacci numbers.

* We can improve this bound even more by examining the new worst case: v has exactly
one neighbor w. In this case, either v or w appears in every maximal independent set.

3Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved randomized algorithms for 3-SAT. To
appear in Proc. STACS, 2010.

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

However, given any independent set that includes w, removing w and adding v creates
another independent set of the same size. It follows that some maximum independent set
includes v, so we don’t need to search the graph G\ {v}, and the G \ N(v) has at most n —2
nodes. On the other hand, if the degree of v is at least 2, then G \ N(v) has at most n— 3
nodes.

T(n—1)
T(n) < O(poly(n)) + max{ T(n—2) = 0(1.46557123188")
T(n—1)+T(n—3)

The base of the exponent is the largest root of the characteristic polynomial r® —r2 — 1.

* Now the worst-case is a graph where every node has degree at least 2; we split this worst
case into two subcases. If G has a node v with degree 3 or more, then G \ N(v) has at
most n — 4 nodes. Otherwise (since we have already considered nodes of degree 0 and 1),
every node in G has degree 2. Let u, v, w be a path of three nodes in G (possibly with u
adjacent to w). In any maximal independent set, either v is present and u, w are absent, or
u is present and its two neighbors are absent, or w is present and its two neighbors are
absent. In all three cases, we recursively count maximal independent sets in a graph with

n — 3 nodes.
T(n—1)

T(n) < O(poly(n))+max ;EZ B 3 s Ty | = 0@ poly(n)) = 0(1.44224957031")
3T(n—3)

The base of the exponent is +/3, the largest root of the characteristic polynomial r* — 3.
The third case would give us a bound of O(1.3802775691™), where the base is the largest
root of the characteristic polynomial r* —r® —1.

* Now the worst case for our algorithm is a graph with an extraordinarily special structure:
Every node has degree 2. In other words, every component of G is a cycle. But it is easy
to prove that the largest independent set in a cycle of length k has size | k/2]. So we can
handle this case directly in polynomial time, without no recursion at all!

T(n—1)
T(n) < O(poly(n))+ max{ T(n—2) = 0(1.3802775691™)
T(n—1)+T(n—4)

Again, the base of the exponential running time is the largest root of the characteristic
polynomial r* —r3 —1.

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’14]

MaxiMUMINDSETSIZE(G):
ifG=g
return O

else if G has a node v with degree 0 or 1
return 1 + MAXIMUMINDSETSIZE(G \ N(v)) {(€n—1))

else if G has a node v with degree greater than 2
withy « 1+ MaxiMmuMINDSETSIZE(G \N(v)) (< n—4))
withoutv <« MaxiMUMINDSETS1ZE(G \ {v}) {(<n—1)
return max{withv, withoutv}

else {(every node in G has degree 2))
total < 0
for each component of G
k « number of vertices in the component
total « total + | k/2]
return total

As with 3SAT, further improvements are possible but increasingly complex. As of 2010, the
fastest published algorithm for computing maximum independent sets runs in O(1.2210™) time*.
However, in an unpublished technical report, Robson describes a computer-generated algorithm
that runs in 0(2"/* poly(n)) = 0(1.1889") time; just the description of this algorithm requires
more than 15 pages.>

Exercises

1. (a) Prove that any n-vertex graph has at most 3"/ maximal independent sets. [Hint:
Modify the MaximuMINDSETSIZE algorithm so that it lists all maximal independent
sets.]

(b) Describe an n-vertex graph with exactly 3"/3 maximal independent sets, for every
integer n that is a multiple of 3.

*2. Describe an algorithm to solve 3SAT in time O(¢" poly(n)), where ¢ = (1 + +/5)/2 ~
1.618034. [Hint: Prove that in each recursive call, either you have just eliminated a pure
literal, or the formula has a clause with at most two literals. What recurrence leads to this
running time?]

4Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer: A simple 0(2%2%") independent
set algorithm. Proc. SODA, 18-25, 2006.

sMike Robson. Finding a maximum independent set in time O(2"/4). Technical report 1251-01, LaBRI, 2001.
(http://www.labri.fr/perso/robson/mis/techrep.ps).

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:
Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I'm not using the term lightly; I'm using
it precisely. His face would suffuse, he would turn red, and he would get violent if people
used the term ‘research’ in his presence. You can imagine how he felt, then, about the term
‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, | felt | had to do something to shield Wilson and the Air
Force from the fact that | was really doing mathematics inside the RAND Corporation. What
title, what name, could | choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steelers’ head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

5 Dynamic Programming

5.1 Fibonacci Numbers
5.1.1 Recursive Definitions Are Recursive Algorithms

The Fibonacci numbers F,, named after Leonardo Fibonacci Pisano?, the mathematician who
popularized ‘algorism’ in Europe in the 13th century, are defined as follows: F, =0, F; =1, and
F,=F, 1+ F,_, forall n > 2. The recursive definition of Fibonacci numbers immediately gives
us a recursive algorithm for computing them:

RecF1BO(n):
if(n<2)
return n
else
return REcFiBo(n — 1) + ReEcFiBo(n — 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm
requires only a constant number of steps: one comparison and possibly one addition. If T(n)
represents the number of recursive calls to RECFTBO, we have the recurrence

T(0)=1, T(1)=1, T(n)=Tn—1)+T(n—2)+1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method
gives us an asymptotic bound of ©(¢™), where ¢ = (+/5+1)/2 ~ 1.61803398875, the so-called
golden ratio, is the largest root of the polynomial r? — r — 1. But it’s fairly easy to prove (hint,
hint) the exact solution T(n) = 2F,.; — 1. In other words, computing F,, using this algorithm
takes more than twice as many steps as just counting to F,,!

Another way to see this is that the REcFiBo is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is F,, our algorithm must

1literally, “Leonardo, son of Bonacci, of Pisa”

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 5: Dynamic Programming [Fa’14]

call REcRiBo(1) (which returns 1) exactly F, times. A quick inductive argument implies that
REcF1B0o(0) is called exactly F,_; times. Thus, the recursion tree has F, + F,_; = F,; leaves,
and therefore, because it’s a full binary tree, it must have 2F,,; — 1 nodes.

5.1.2 Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same
Fibonacci numbers over and over and over. A single call to REcF1Bo(n) results in one recursive call
to REcFiBo(n— 1), two recursive calls to REcF1Bo(n —2), three recursive calls to REcFiso(n — 3),
five recursive calls to REcF1Bo(n —4), and in general F;_, recursive calls to REcFiBo(n — k) for
any integer 0 < k < n. Each call is recomputing some Fibonacci number from scratch.

We can speed up our recursive algorithm considerably just by writing down the results of
our recursive calls and looking them up again if we need them later. This process was dubbed
memoization by Richard Michie in the late 1960s.2

MewmF1BO(n):
if(n<2)
return n
else
if F[n] is undefined
F[n] « MEmMF1BO(n — 1) + MEMF1BO(Nn — 2)
return F[n]

Memoization clearly decreases the running time of the algorithm, but by how much? If we
actually trace through the recursive calls made by MEMFiBo, we find that the array F[] is filled
from the bottom up: first F[2], then F[3], and so on, up to F[n]. This pattern can be verified by
induction: Each entry F[i] is filled only after its predecessor F[i —1]. If we ignore the time spent
in recursive calls, it requires only constant time to evaluate the recurrence for each Fibonacci
number F;. But by design, the recurrence for F; is evaluated only once for each index i! We
conclude that MEMF1BO performs only O(n) additions, an exponential improvement over the
naive recursive algorithm!

5.1.3 Dynamic Programming: Fill Deliberately

But once we see how the array F[] is filled, we can replace the recursion with a simple loop that
intentionally fills the array in order, instead of relying on the complicated recursion to do it for
us ‘accidentally’.

ITERFIBO(1):
F[0] <0
F[1]<1
fori<—2ton
Fl[i]<—F[i—1]+F[i—2]
return F[n]

Now the time analysis is immediate: ITERF1BO clearly uses O(n) additions and stores O(n)
integers.

This gives us our first explicit dynamic programming algorithm. The dynamic programming
paradigm was developed by Richard Bellman in the mid-1950s, while working at the RAND

2“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Corporation. Bellman deliberately chose the name ‘dynamic programming’ to hide the mathe-
matical character of his work from his military bosses, who were actively hostile toward anything
resembling mathematical research. Here, the word ‘programming’ does not refer to writing code,
but rather to the older sense of planning or scheduling, typically by filling in a table. For example,
sports programs and theater programs are schedules of important events (with ads); television
programming involves filling each available time slot with a show (and ads); degree programs are
schedules of classes to be taken (with ads). The Air Force funded Bellman and others to develop
methods for constructing training and logistics schedules, or as they called them, ‘programs’. The
word ‘dynamic’ is meant to suggest that the table is filled in over time, rather than all at once (as
in ‘linear programming’, which we will see later in the semester).3

5.1.4 Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all intermediate results
through the entire computation. For example, we can significantly reduce the space requirements
of our algorithm ITERFIBO by maintaining only the two newest elements of the array:

ITERFIBO2(N):

prev« 1

curr < 0

forie—1ton
next < curr + prev
prev <« curr
curr <— next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F_; = 1 so that
ITERF1B02(0) returns the correct value 0.)

5.1.5 Faster! Faster!

Even this algorithm can be improved further, using the following wonderful fact:

bl

In other words, multiplying a two-dimensional vector by the matrix [(1) H does exactly the
same thing as one iteration of the inner loop of ITERF1Bo2. This might lead us to believe that
multiplying by the matrix n times is the same as iterating the loop n times:

EIBEES

A quick inductive argument proves this fact. So if we want the nth Fibonacci number, we just have
to compute the nth power of the matrix [? 1] If we use repeated squaring, computing the nth
power of something requires only O(log n) multiplications. In this case, that means O(logn) 2 x 2
matrix multiplications, each of which reduces to a constant number of integer multiplications
and additions. Thus, we can compute F, in only O(logn) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was already an
exponential speedup over our original recursive algorithm. Right?

3“T thought dynamic programming was a good name. It was something not even a Congressman could object to.
So I used it as an umbrella for my activities.”

Algorithms Lecture 5: Dynamic Programming [Fa’14]

5.1.6 Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is
approximately nlog;, ¢ ~ n/5 decimal digits long, or nlog, ¢ ~ 2n/3 bits. So we can’t possibly
compute F,, in logarithmic time — we need Q(n) time just to write down the answer!

The way out of this apparent paradox is to observe that we can’t perform arbitrary-precision
arithmetic in constant time. Let M (n) denote the time required to multiply two n-digit numbers.
The matrix-based algorithm’s actual running time obeys the recurrence T(n) = T(|n/2])+ M(n),
which solves to T(n) = O(M(n)) using recursion trees. The fastest known multiplication
algorithm runs in time O(nlog n20U0g m)) ¢4 that is also the running time of the fastest algorithm
known to compute Fibonacci numbers.

Is this algorithm slower than our initial “linear-time” iterative algorithm? No! Addition isn’t
free, either. Adding two n-digit numbers takes O(n) time, so the running time of the iterative
algorithm is O(n?2). (Do you see why?) The matrix-squaring algorithm really is faster than the
iterative addition algorithm, but not exponentially faster.

In the original recursive algorithm, the extra cost of arbitrary-precision arithmetic is
overwhelmed by the huge number of recursive calls. The correct recurrence is T(n) =
T(n—1)+ T(n—2) + O(n), for which the annihilator method still implies the solution

T(n)=0(¢").

5.2 Longest Increasing Subsequence

In a previous lecture, we developed a recursive algorithm to find the length of the longest
increasing subsequence of a given sequence of numbers. Given an array A[1..n], the length of
the longest increasing subsequence is computed by the function call LISBIGGER(—00,A[1..n]),
where LISBIGGER is the following recursive algorithm:

LISBIGGER(prev,A[1..n]):
ifn=0
return 0

else
max < LISBIGGER(prev,A[2..n])
if A[1] > prev
L «— 1+ LISBIGGER(A[1],A[2..n])
if L > max
max « L
return max

We can simplify our notation slightly with two simple observations. First, the input variable
prev is always either —oo or an element of the input array. Second, the second argument of

LISBIGGER is always a suffix of the original input array. If we add a new sentinel value A[0] = —o0
to the input array, we can identify any recursive subproblem with two array indices.
Thus, we can rewrite the recursive algorithm as follows. Add the sentinel value A[0] = —o0.

Let LIS(i, j) denote the length of the longest increasing subsequence of A[j .. n] with all elements
larger than A[i]. Our goal is to compute LIS(0,1). For all i < j, we have

0 ifj>n
LIS(i,j)={ LIS(i,j +1) ifA[i]>Alj]
max{LIS(i,j+ 1), 1+ LIS(j,j+ 1)} otherwise

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Because each recursive subproblem can be identified by two indices i and j, we can store the
intermediate values in a two-dimensional array LIS[0..n,1..n].# Since there are O(n?) entries
in the table, our memoized algorithm uses O(n?2) space. Each entry in the table can be computed
in O(1) time once we know its predecessors, so our memoized algorithm runs in O(n?) time.

It’s not immediately clear what order the recursive algorithm fills the rest of the table; all we
can tell from the recurrence is that each entry LIS[i, j] is filled in after the entries LIS[i,j+ 1]
and LIS[j,j+ 1] in the next columns. But just this partial information is enough to give us an
explicit evaluation order. If we fill in our table one column at a time, from right to left, then
whenever we reach an entry in the table, the entries it depends on are already available.

<l

\J
\J

v

Dependencies in the memoization table for longest increasing subsequence, and a legal evaluation order

Finally, putting everything together, we obtain the following dynamic programming algorithm:

LIS(A[1..n]):
A[0] « —o0 {(Add a sentinel))
fori—Oton {((Base cases))

LIS[i,n+1]«<0

for j < n downto 1
fori—0toj—1
if Ali] = A[j]
LIS[i,jl« LIS[i,j+1]
else
LIS[i,j] < max{LIS[i,j+1], 1+ LIS[j,j+ 11}

return LIS[0,1]

As expected, the algorithm clearly uses O(n?2) time and space. However, we can reduce the space
to O(n) by only maintaining the two most recent columns of the table, LIS[-,j] and LIS[-,j+1].5

This is not the only recursive strategy we could use for computing longest increasing
subsequences efficiently. Here is another recurrence that gives us the O(n) space bound for
free. Let LIS’(i) denote the length of the longest increasing subsequence of A[i..n] that starts
with A[i]. Our goal is to compute LIS’(0) — 1; we subtract 1 to ignore the sentinel value —oo.
To define LIS’(i) recursively, we only need to specify the second element in subsequence; the
Recursion Fairy will do the rest.

LIS'(i) =1+ max{LIS'(j)|j > i and A[j] > A[i]}

Here, ’m assuming that max@ = 0, so that the base case is L’(n) = 1 falls out of the recurrence
automatically. Memoizing this recurrence requires only O(n) space, and the resulting algorithm

4In fact, we only need half of this array, because we always have i < j. But even if we cared about constant factors
in this class (we don’t), this would be the wrong time to worry about them. The first order of business is to find an
algorithm that actually works; once we have that, then we can think about optimizing it.

5See, I told you not to worry about constant factors yet!

Algorithms Lecture 5: Dynamic Programming [Fa’14]

runs in O(n?) time. To transform this memoized recurrence into a dynamic programming
algorithm, we only need to guarantee that LIS’(j) is computed before LIS’(i) whenever i < j.

LIS2(A[1..n]):

A[0]=—o00 {(Add a sentinel))

for i < n downto 0
LIS[i]« 1
forje—i+1lton
ifA[j]>Ali]and 1+ LIS'[j]> LIS'[i]
LIS'[i] < 1+ LIS[j]

return LIS'[0]—1 {(Don’t count the sentinel))

5.3 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic programming
algorithms store the solutions of intermediate subproblems, often but not always in some kind of
array or table. Many algorithms students make the mistake of focusing on the table (because
tables are easy and familiar) instead of the much more important (and difficult) task of finding a
correct recurrence. As long as we memoize the correct recurrence, an explicit table isn’t really
necessary, but if the recursion is incorrect, nothing works.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are almost always developed in two distinct stages.

1. Formulate the problem recursively. Write down a recursive formula or algorithm for the
whole problem in terms of the answers to smaller subproblems. This is the hard part. It
generally helps to think in terms of a recursive definition of the object you're trying to
construct. A complete recursive formulation has two parts:

(a) Describe the precise function you want to evaluate, in coherent English. Without this
specification, it is impossible, even in principle, to determine whether your solution is
correct.

(b) Give a formal recursive definition of that function.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts
with the base cases of your recurrence and works its way up to the final solution, by
considering intermediate subproblems in the correct order. This stage can be broken down
into several smaller, relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive
algorithm call itself, starting with some initial input? For example, the argument to
RECF1BO is always an integer between 0 and n.

(b) Analyze space and running time. The number of possible distinct subproblems
determines the space complexity of your memoized algorithm. To compute the
time complexity, add up the running times of all possible subproblems, ignoring the
recursive calls. For example, if we already know F;_; and F;_,, we can compute F; in
O(1) time, so computing the first n Fibonacci numbers takes O(n) time.

Algorithms Lecture 5: Dynamic Programming [Fa’14]

(c) Choose a data structure to memoize intermediate results. For most problems,
each recursive subproblem can be identified by a few integers, so you can use a
multidimensional array. For some problems, however, a more complicated data
structure is required.

(d) Identify dependencies between subproblems. Except for the base cases, every
recursive subproblem depends on other subproblems—which ones? Draw a picture of
your data structure, pick a generic element, and draw arrows from each of the other
elements it depends on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem
comes after the subproblems it depends on. Typically, this means you should consider
the base cases first, then the subproblems that depends only on base cases, and so on.
More formally, the dependencies you identified in the previous step define a partial
order over the subproblems; in this step, you need to find a linear extension of that
partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and
you know how to solve each subproblem. So do that! If your data structure is an array,
this usually means writing a few nested for-loops around your original recurrence.
You don’t need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if
you try to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we're very very very very lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is look for the best
first step, take it, and then continue. While this approach seems very natural, it almost never
works; optimization problems that can be solved correctly by a greedy algorithm are very rare.
Nevertheless, for many problems that should be solved by dynamic programming, many students’
first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest
common substring of the two strings, match up those substrings (since those substitutions don’t
cost anything), and then recursively look for the edit distances between the left halves and
right halves of the strings. If there is no common substring—that is, if the two strings have no
characters in common—the edit distance is clearly the length of the larger string. If this sounds
like a stupid hack to you, pat yourself on the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the
rules about logarithms and big-Oh notation:

Greedy algorithms never work!

Use dynamic programming instead!

What, never?
No, never!
What, never?

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Well. . . hardly ever.©

A different lecture note describes the effort required to prove that greedy algorithms are
correct, in the rare instances when they are. You will not receive any credit for any greedy
algorithm for any problem in this class without a formal proof of correctness. We’'ll push
through the formal proofs for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the
minimum number of letter insertions, letter deletions, and letter substitutions required to
transform one word into another. For example, the edit distance between FOOD and MONEY is at
most four:

FOOD — MOQOD — MOND — MONED — MONEY

A better way to display this editing process is to place the words one above the other, with a gap
in the first word for every insertion, and a gap in the second word for every deletion. Columns
with two different characters correspond to substitutions. Thus, the number of editing steps is
just the number of columns that don’t contain the same character twice.

F 0 O D
M 0 N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance
is exactly four. Unfortunately, this is not so easy in general. Here’s a longer example, showing
that the distance between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

AL G 0O R I

T H M

A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two
strings, we first need to develop a recursive definition. Our gap representation for edit sequences
has a crucial “optimal substructure” property. Suppose we have the gap representation for the
shortest edit sequence for two strings. If we remove the last column, the remaining columns
must represent the shortest edit sequence for the remaining substrings. We can easily prove
this by contradiction. If the substrings had a shorter edit sequence, we could just glue the last
column back on and get a shorter edit sequence for the original strings. Once we figure out what
should go in the last column, the Recursion Fairy will magically give us the rest of the optimal
gap representation.

So let’s recursively define the edit distance between two strings A[1..m] and B[1..n], which
we denote by Edit(A[1..m],B[1..n]). If neither string is empty, there are three possibilities for
the last column in the shortest edit sequence:

* Insertion: The last entry in the bottom row is empty. In this case, the edit distance is
equal to Edit(A[1..m—1],B[1..n])+ 1. The +1 is the cost of the final insertion, and the
recursive expression gives the minimum cost for the other columns.

6Greedy methods hardly ever work!
So give three cheers, and one cheer more,
for the careful Captain of the Pinafore!
Then give three cheers, and one cheer more,
for the Captain of the Pinafore!

Algorithms Lecture 5: Dynamic Programming [Fa’14]

* Deletion: The last entry in the top row is empty. In this case, the edit distance is equal to
Edit(A[1..m],B[1..n—1]) + 1. The +1 is the cost of the final deletion, and the recursive
expression gives the minimum cost for the other columns.

¢ Substitution: Both rows have characters in the last column. If the characters are the same,
the substitution is free, so the edit distance is equal to Edit(A[1..m—1],B[1..n—1]). If the
characters are different, then the edit distance is equal to Edit(A[1..m—1],B[1..n—1])+1.

The edit distance between A and B is the smallest of these three possibilities:”

Edit(A[1..m—1],B[1..n]) +1
Edit(A[1..m],B[1..n]) =min{ Edit(A[1..m],B[1..n—1])+1
Edit(A[1..m—1],B[1..n—1]) + [Alm] # B[n]]

This recurrence has two easy base cases. The only way to convert the empty string into a
string of n characters is by performing n insertions. Similarly, the only way to convert a string of
m characters into the empty string is with m deletions, Thus, if ¢ denotes the empty string, we
have

Edit(A[1..m],e) =m, Edit(e,B[1..n]) =n.

Both of these expressions imply the trivial base case Edit(e,) = 0.

Now notice that the arguments to our recursive subproblems are always prefixes of the original
strings A and B. We can simplify our notation by using the lengths of the prefixes, instead of the
prefixes themselves, as the arguments to our recursive function.

Let Edit(i, j) denote the edit distance between the prefixes A[1..i] and B[1..j].

This function satisfies the following recurrence:

(i ifj=0

j ifi=0
Edit(i, j) = § Edit(i—1,j)+1,

min{ Edit(i,j—1)+1, otherwise

| Edit(i—1,j— 1)+ [A[i] # B[j]]

The edit distance between the original strings A and B is just Edit(m,n). This recurrence
translates directly into a recursive algorithm; the precise running time is not obvious, but it’s
clearly exponential in m and n. Fortunately, we don’t care about the precise running time
of the recursive algorithm. The recursive running time wouldn’t tell us anything about our
eventual dynamic programming algorithm, so we’re just not going to bother computing it.8

Because each recursive subproblem can be identified by two indices i and j, we can memoize
intermediate values in a two-dimensional array Edit[0..m,0..n]. Note that the index ranges
start at zero to accommodate the base cases. Since there are ©(mn) entries in the table, our
memoized algorithm uses @(mn) space. Since each entry in the table can be computed in ©(1)
time once we know its predecessors, our memoized algorithm runs in @(mn) time.

7Once again, I'm using Iverson’s bracket notation [P] to denote the indicator variable for the logical proposition P,
which has value 1 if P is true and 0 if P is false.
8In case you're curious, the running time of the unmemoized recursive algorithm obeys the following recurrence:

T() 0(1) ifn=00orm=0,
m,n) =
T(m,n—1)+T(m—1,n)+T(n—1,m—1)+0(1) otherwise.

Algorithms Lecture 5: Dynamic Programming [Fa’14]

YVvy

%

Dependencies in the memoization table for edit distance, and a legal evaluation order

Each entry Edit[1i, j] depends only on its three neighboring entries Edit[i—1, j], Edit[i,j— 1],
and Edit[i — 1, j — 1]. If we fill in our table in the standard row-major order—row by row from
top down, each row from left to right—then whenever we reach an entry in the table, the entries
it depends on are already available. Putting everything together, we obtain the following dynamic
programming algorithm:

Ep1TDisTANCE(A[1..m],B[1..n]):
forj—1ton
Edit[0,j] «j

fori<—1tom
Edit[i,0] « i
forj—1ton
if Ali] = B[]
Edit[i,j] « min{Edit[i —1,j]+ 1, Edit[i,j—1]+ 1, Edit[i—1,j—17}
else
Edit[i,j] « min{Edit[i —1,j]+ 1, Edit[i,j — 1]+ 1, Edit[i—1,j— 1]+ 1}

return Edit[m,n]

The resulting table for ALGORITHM — ALTRUISTIC is shown on the next page. Bold numbers
indicate places where characters in the two strings are equal. The arrows represent the
predecessor(s) that actually define each entry. Each direction of arrow corresponds to a different
edit operation: horizontal=deletion, vertical=insertion, and diagonal=substitution. Bold
diagonal arrows indicate “free” substitutions of a letter for itself. Any path of arrows from the top
left corner to the bottom right corner of this table represents an optimal edit sequence between
the two strings. (There can be many such paths.) Moreover, since we can compute these arrows
in a post-processing phase from the values stored in the table, we can reconstruct the actual
optimal editing sequence in O(n + m) additional time.

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths
through this table from the top left to the bottom right, so there are three optimal edit sequences:

A L GO0 R I T H M
AL TRUTI S TTIC

A L G 0O R I T H M
A L T R U I S T TI C

I don’t know of a general closed-form solution for this mess, but we can derive an upper bound by defining a new
function
o(1 if N =0,
T'(N)= max T(n,m)= (1) ! .
n+m=N 2T(N—1)+ T(N —2)+0(1) otherwise.
The annihilator method implies that T’(N) = O((1 + +/2)V). Thus, the running time of our recursive edit-distance
algorithm is at most T'(n + m) = O((1 + V/2)™*™).

10

Algorithms Lecture 5: Dynamic Programming [Fa’14]

AL GORTITHM
0 »1-2—-3—-4—-55—6—>7—8—>9
I\
A 1 0—-1-2—3—54-55—-6—7—8
I IN
L 2 1 0—-1-2—-3—-4—-5—-6—7
oL IN N N NN
T|] 3 2 1 1-2—-3—4—4-55-6
VoL IN N NN
Rl 4 3 2 2 2 2-3—-4-5-06
oo ININININ N NN
Ul 5 4 3 3 3 3 3—-4-5-6
oL ININININ N NN
I|({ 6 5 4 4 4 4 3-54-5-6
A WAVAVAEE A VRN
S 7 6 55 5 5 4 4 5 6
Lol INININD NN N
T| 8 7 6 6 6 6 5 4—-5—6
ool INININING NN
I(9 8 7 7 7 7 6 5 5-6
ool INININD LN
C[106 9 8 8 8 8 7 6 6 6

The memoization table for Edit(ALGORITHM, ALTRUISTIC)

AL G 0O R I T H M
AL T R U I S TTIC

5.6 More Examples

In the previous note on backtracking algorithms, we saw two other examples of recursive
algorithms that we can significantly speed up via dynamic programming.

5.6.1 Subset Sum

Recall that the Subset Sum problem asks, given a set X of positive integers (represented as an array
X[1..n] and an integer T, whether any subset of X sums to T. In that lecture, we developed a
recursive algorithm which can be reformulated as follows. Fix the original input array X[1..n]
and the original target sum T, and define the boolean function

SS(i, t) = some subset of X[i..n] sums to t.

Our goal is to compute S(1, T), using the recurrence

TRUE ift=0,
SS(i,t) = { FALSE ift<Oori>n,
SS(i+1,t) v SS(i+1,t—X[i]) otherwise.

There are only nT possible values for the input parameters that lead to the interesting case
of this recurrence, and we can memoize all such values in an n x T array. If S(i +1,t) and
S(i +1,t —X[i]) are already known, we can compute S(i, t) in constant time, so memoizing
this recurrence gives us and algorithm that runs in O(nT) time.® To turn this into an explicit
dynamic programming algorithm, we only need to consider the subproblems S(i, t) in the proper
order:

9Even though SubsetSum is NP-complete, this bound does not imply that P=NP, because T is not necessary
bounded by a polynomial function of the input size.

11

Algorithms Lecture 5: Dynamic Programming [Fa’14]

SusserSuM(X[1..n],T):
S[n+1,0] « TRUE
fort —1toT

S[n+1,t] < FaLSE

for i < n downto 1
S[i,0] = TRUE
fort —1toX[i]—1
S[i,t] < S[i+1,¢t] {{(Avoid the case t < 0))
fort «X[i]to T
Sli,t] < S[i+1,t]vS[i+1,t—X[i]]

return S[1, T]

This iterative algorithm clearly always uses O(nT) time and space. In particulay, if T is
significantly larger than 2", this algorithm is actually slower than our naive recursive algorithm.
Dynamic programming isn’t always an improvement!

5.6.2 NFA acceptance

The other problem we considered in the previous lecture note was determining whether a
given NFA M = (%, Q,s,A, &) accepts a given string w € 3*. To make the problem concrete, we
can assume without loss of generality that the alphabet is X = {1,2,...,|X|}, the state set is
Q=1{1,2,...,|Q|}, the start state is state 1, and our input consists of three arrays:

* A boolean array A[1..|Q|], where Alq] = Truk if and only if q € A.

* Aboolean array 6[1..|Q|,1..|%|,1..|Q|], where 6[p, a,q] = TruE if and only if p € 6(q, a).

e An array w[1..n] of symbols, representing the input string.
Now consider the boolean function
Accepts?(q,i) = TrRUE if and only if M accepts the suffix w[i..n] starting in state q,
or equivalently,
Accepts?(q,i) = TRUE if and only if 6*(q, w[i..n]) contains at least one state in A.

We need to compute Accepts(1,1). The recursive definition of the string transition function &*
implies the following recurrence for Accepts?:

TRUE ifi>nandge€A

E ifi>nandqeA
Accepts?(q,i) := ALSE ifi1>nandgq

\/ Accepts?(r,x) if w=ax
reé(q,a)

Rewriting this recurrence in terms of our input representation gives us the following:

TRUE if i > n and A[q] = TRUE

FALSE if i > n and A[q] = FALSE
Accepts?(q,i) := al

\/ (5[q,w[i], r] A Accepts?(r,i+ 1)) otherwise

r=1

12

Algorithms Lecture 5: Dynamic Programming [Fa’14]

We can memoize this function into a two-dimensional array Accepts?[1..|Q|,1..n+ 1]. Each
entry Accepts?[q, 1] depends on some subset of entries of the form Accepts?[r,i+1]. So we can fill
the memoization table by considering the possible indices i in decreasing order in the outer loop,
and consider states g in arbitrary order in the inner loop. Evaluating each entry Accepts?[q,i]
requires O(|Q|) time, using an even deeper loop over all states r, and there are O(n|Q|) such
entries. Thus, the entire dynamic programming algorithm requires O(n|Q|?) time.

NFAAccerTs?(A[1..]Q]], 6[1..]1Q|,1..12,1..]1Q|], w[1..n]):
for g < 1 to |Q|
Accepts?[q,n+ 1] « Alq]
fori < ndowntol
for g < 1to |Q|
Accepts?[q,i] < FALSE
for r < 1 to |Q|
if 6[q,w[i],r] and Accepts?[r,i + 1]
Accepts?[q,i] < TRUE

return Accepts?[1,1]

5.7 Optimal Binary Search Trees

In an earlier lecture, we developed a recursive algorithm for the optimal binary search tree
problem. We are given a sorted array A[1..n] of search keys and an array f[1..n] of frequency
counts, where f[i] is the number of searches to A[i]. Our task is to construct a binary search
tree for that set such that the total cost of all the searches is as small as possible. We developed
the following recurrence for this problem:

OptCost(f[l..n])=lrgign{OptCost(f[l..r—l]) + Zf[i] + OptCost(f[r+1..n])}
== i=1

To put this recurrence in more standard form, fix the frequency array f, and let OptCost(i, j)
denote the total search time in the optimal search tree for the subarray Ali..j]. To simplify
notation a bit, let F(i, j) denote the total frequency count for all the keys in the interval A[i .. j]:

j
F(i,j) = flk]

k=i

We can now write

. 0 if j <i
OptCost(i,j) =1 : .
F(i,j)+ glg(OptCost(l, r —1) + OptCost(r + 1,])) otherwise
i<r<j

The base case might look a little weird, but all it means is that the total cost for searching an
empty set of keys is zero.

The algorithm will be somewhat simpler and more efficient if we precompute all possible
values of F(i,j) and store them in an array. Computing each value F(i, j) using a separate
for-loop would O(n®) time. A better approach is to turn the recurrence

Fi,) = flil ifi=j
] F(i,j—1)+f[j] otherwise

into the following O(n?)-time dynamic programming algorithm:

13

Algorithms Lecture 5: Dynamic Programming [Fa’14]

INITE(f[1..n]):
fori<—1ton
F[i,i—1]«0
forj—iton
Fli,jl < F[i,j =11+ f[j]
This will be used as an initialization subroutine in our final algorithm.

So now let’s compute the optimal search tree cost OptCost(1, n) from the bottom up. We can
store all intermediate results in a table OptCost[1..n,0..n]. Only the entries OptCost[i, j] with
j = i—1 will actually be used. The base case of the recurrence tells us that any entry of the form
OptCost[i,i — 1] can immediately be set to 0. For any other entry OptCost[i, j], we can use the
following algorithm fragment, which comes directly from the recurrence:

CompuTEOPTCOST(i, j):
OptCost[i,j] « oo
forr —itoj
tmp < OptCost[i,r — 1]+ OptCost[r + 1, j]
if OptCost[i, j] > tmp
OptCost[i, j] « tmp
OptCost[i, j] < OptCost[i, j]+ F[i,j]

The only question left is what order to fill in the table.

Each entry OptCost[i, j] depends on all entries OptCost[i,r — 1] and OptCost[r + 1, j] with
i < k <j. In other words, every entry in the table depends on all the entries directly to the left
or directly below. In order to fill the table efficiently, we must choose an order that computes
all those entries before OptCost[i, j]. There are at least three different orders that satisfy this
constraint. The one that occurs to most people first is to scan through the table one diagonal at a
time, starting with the trivial base cases OptCost[i,i — 1]. The complete algorithm looks like this:

OpTIMALSEARCHTREE(f[1..n]):
INTTF(f[1..1])
forie—1ton
OptCost[i,i—1]« 0
ford —0ton—1
fori—1ton—d
CompuTEOPTCOST(i,i + d)
return OptCost[1,n]

We could also traverse the array row by row from the bottom up, traversing each row from
left to right, or column by column from left to right, traversing each columns from the bottom up.

OpTIMALSEARCHTREE2(f[1..n]): OpPTIMALSEARCHTREE3(f[1..n]):
INITF(f[1..1]) INTTF(f[1..n])
for i « n downto 1 forj<—Oton
OptCost[i,i—1] <0 OptCost[j+1,j]«< 0
forje—iton for i < j downto 1
CompuTEOPTCOST(1, j) CompuTEOPTCOST(1, j)
return OptCost[1,n] return OptCost[1,n]

No matter which of these orders we actually use, the resulting algorithm runs in @(n?) time
and uses ©(n?2) space. We could have predicted these space and time bounds directly from the
original recurrence.
ifj=i—1i

0
OptCost(i,j) =1 _
F(i,j)+ gllil(OptCOSt(l, r —1) + OptCost(r + 1,])) otherwise

i<r<j

14

Algorithms Lecture 5: Dynamic Programming [Fa’14]

AAAAAL

>

%

YYVYVYY

Three different evaluation orders for the table OptCost[i, j].

First, the function has two arguments, each of which can take on any value between 1 and n, so
we probably need a table of size 0(n?). Next, there are three variables in the recurrence (i, 75
and r), each of which can take any value between 1 and n, so it should take us O(n®) time to fill
the table.

5.8 The CYK Parsing Algorithm

In the same earlier lecture, we developed a recursive backtracking algorithm for parsing context-
free languages. The input consists of a string w and a context-free grammar G in Chomsky
normal form—meaning every production has the form A — a, for some symbol a, or A— BC, for
some non-terminals B and C. Our task is to determine whether w is in the language generated
by G.

Our backtracking algorithm recursively evaluates the boolean function Generates?(A, x),
which equals TRuE if and only if string x can be derived from non-terminal A, using the following
recurrence:

TRUE if | x| =1and A— x

F if x| =1 and A
Generates?(A, x) = ALSE if [x| and A/ x

\/ Generates?(B, y) A Generates?(C,z) otherwise
A—BC y*z=x

This recurrence was transformed into a dynamic programming algorithm by Tadao Kasami in
1965, and again independently by Daniel Younger in 1967, and again independently by John
Cocke in 1970, so naturally the resulting algorithm is known as “Cocke-Younger-Kasami”, or more
commonly the CYK algorithm.

We can derive the CYK algorithm from the previous recurrence as follows. As usual for
recurrences involving strings, we need to modify the function slightly to ease memoization. Fix
the input string w, and then let Generates?(A, i, j) = TRUE if and only if the substring w[i..j] can
be derived from non-terminal A. Now our earlier recurrence can be rewritten as follows:

TRUE ifi=jand A — w[i]
FALSE ifi=jand A5 w[i]
Generates?(A,i,j) = i1
\/ Generates?(B, i, k) A Generates?(C,k + 1,j) otherwise
A—BC k=i

This recurrence can be memoized into a three-dimensional boolean array Gen[1..|T'|,1..n,1..n],
where the first dimension is indexed by the non-terminals I' in the input grammar. Each
entry Gen[A,1,j] in this array depends on entries of the form Gen[-,i,k] for some k < j, or
Gen[-,k +1,j] for some k > i. Thus, we can fill the array by increasing j in the outer loop,

15

Algorithms Lecture 5: Dynamic Programming [Fa’14]

decreasing i in the middle loop, and considering non-terminals A in arbitrary order in the inner
loop. The resulting dynamic programming algorithm runs in O(n3 - |T'|) time.

CYK(w, G):
forie—1ton
for all non-terminals A
if G contains the production A — wli]
Gen[A,i,i] « TRUE
else
Gen[A,1,i] « FALSE

forj—1ton
fori <~ ndowntoj+1
for all non-terminals A
Gen[A,1i,j] < FALSE
for all production rules A— BC
forke—itoj—1
if Gen[B,1,k] and Gen[C,k+ 1,]
Gen[A,i,j] < TRUE
return Gen[S,1,n]

5.9 Dynamic Programming on Trees

So far, all of our dynamic programming example use a multidimensional array to store the results
of recursive subproblems. However, as the next example shows, this is not always the most
appropriate date structure to use.

A independent set in a graph is a subset of the vertices that have no edges between them.
Finding the largest independent set in an arbitrary graph is extremely hard; in fact, this is one of
the canonical NP-hard problems described in another lecture note. But from some special cases of
graphs, we can find the largest independent set efficiently. In particular, when the input graph is
a tree (a connected and acyclic graph) with n vertices, we can compute the largest independent
set in O(n) time.

In the recursion notes, we saw a recursive algorithm for computing the size of the largest
independent set in an arbitrary graph:

MaxiMUMINDSETS1ZE(G):
ifG=g
return O

v « any node in G

withv < 1 + MaxiMUMINDSETSIZE(G \ N(v))
withoutv < MaxiMUMINDSETSIZE(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: the set containing v and all of its neighbors. As we
observed in the other lecture notes, this algorithm has a worst-case running time of O(2" poly(n)),
where n is the number of vertices in the input graph.

Now suppose we require that the input graph is a tree; we will call this tree T instead of G
from now on. We need to make a slight change to the algorithm to make it truly recursive. The
subgraphs T \ {v} and T \ N(v) are forests, which may have more than one component. But the
largest independent set in a disconnected graph is just the union of the largest independent sets
in its components, so we can separately consider each tree in these forests. Fortunately, this has
the added benefit of making the recursive algorithm more efficient, especially if we can choose
the node v such that the trees are all significantly smaller than T. Here is the modified algorithm:

16

Algorithms Lecture 5: Dynamic Programming [Fa’14]

MaxiMUMINDSETS1ZE(T):
ifT=g
return O

v « any node in T

withy « 1
for each tree T' in T \ N(v)
withy « withv + MaXIMUMINDSETS1ZE(T’)

withoutv « 0
for each tree T in T \ {v}
withoutv « withoutv + MAXIMUMINDSETS1ZE(T")

return max{withv, withoutv}.

Now let’s try to memoize this algorithm. Each recursive subproblem considers a subtree
(that is, a connected subgraph) of the original tree T. Unfortunately, a single tree T can have
exponentially many subtrees, so we seem to be doomed from the start!

Fortunately, there’s a degree of freedom that we have not yet exploited: We get to choose
the vertex v. We need a recipe—an algorithm!—for choosing v in each subproblem that limits
the number of different subproblems the algorithm considers. To make this work, we impose
some additional structure on the original input tree. Specifically, we declare one of the vertices
of T to be the root, and we orient all the edges of T away from that root. Then we let v be the
root of the input tree; this choice guarantees that each recursive subproblem considers a rooted
subtree of T. Each vertex in T is the root of exactly one subtree, so now the number of distinct
subproblems is exactly n. We can further simplify the algorithm by only passing a single node
instead of the entire subtree:

MAXIMUMINDSETSI1ZE(V):
withy « 1
for each grandchild x of v
withv « withy + MAXIMUMINDSETS1ZE(X)

withoutv « 0
for each child w of v
withoutv < withoutv + MAXIMUMINDSETSIZE(W)

return max{withv, withoutv}.

What data structure should we use to store intermediate results? The most natural choice is
the tree itself! Specifically, for each node v, we store the result of MaxiIMUMINDSETSIZE(V) in a
new field v. MIS. (We could use an array, but then we’d have to add a new field to each node
anyway, pointing to the corresponding array entry. Why bother?)

What'’s the running time of the algorithm? The non-recursive time associated with each
node v is proportional to the number of children and grandchildren of v; this number can be
very different from one vertex to the next. But we can turn the analysis around: Each vertex
contributes a constant amount of time to its parent and its grandparent! Since each vertex has at
most one parent and at most one grandparent, the total running time is O(n).

What'’s a good order to consider the subproblems? The subproblem associated with any
node v depends on the subproblems associated with the children and grandchildren of v. So we
can visit the nodes in any order, provided that all children are visited before their parent. In
particular, we can use a straightforward post-order traversal.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive. I've swapped
the evaluation of the with-v and without-v cases; we need to visit the kids first anyway, so why
not consider the subproblem that depends directly on the kids first?

17

Algorithms Lecture 5: Dynamic Programming [Fa’14]

MaxiMUMINDSETS1ZE(V):
withoutv < 0
for each child w of v
withoutv < withoutv + MAXIMUMINDSETSIZE(w)

withy « 1
for each grandchild x of v
withv « withv + x.MIS

v.MIS «— max{withv, withoutv}
return v. MIS

Another option is to store two values for each rooted subtree: the size of the largest
independent set that includes the root, and the size of the largest independent set that excludes
the root. This gives us an even simpler algorithm, with the same O(n) running time.

MAXIMUMINDSETSIZE(V):
v.MISno < 0
v.MISyes < 1
for each child w of v
v.MISno < v.MISno + MaXIMUMINDSETS1ZE(w)
v.MISyes < v.MISyes + w.MISno
return max{v. MISyes, v. MISno}

Exercises

Sequences/Arrays

1. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira, spending
the better part of your day giving change to your customers. Because paper is a very rare
and valuable resource in Antarctica, cashiers were required by law to use the fewest bills
possible whenever they gave change. Thanks to the numerological predilections of one of
its founders, the currency of Nadira, called Dream Dollars, was available in the following
denominations: $1, $4, $7, $13, $28, $52, $91, $365.1°

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed
the target amount. For example, to make $122 using the greedy algorithm, we first
take a $91 bill, then a $28 bill, and finally three $1 bills. Give an example where this
greedy algorithm uses more Dream Dollar bills than the minimum possible.

(b) Describe and analyze a recursive algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (Don’t worry about
making your algorithm fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, the
minimum number of bills needed to make k Dream Dollars. (This one needs to be
fast.)

2. Suppose you are given an array A[1..n] of numbers, which may be positive, negative, or
zero, and which are not necessarily integers.

10For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://moneyart.biz/dd/.

18

Algorithms Lecture 5: Dynamic Programming [Fa’14]

(a) Describe and analyze an algorithm that finds the largest sum of of elements in a
contiguous subarray A[i..j].

(b) Describe and analyze an algorithm that finds the largest product of of elements in a
contiguous subarray A[i..j].
For example, given the array [—6,12,—7,0,14,—7,5] as input, your first algorithm should
return the integer 19, and your second algorithm should return the integer 504.

sum=19

———
|6 12[—7]0]|14]—7] 5|
| —

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers
takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question since at least
the mid-1980s. You can find many correct solutions on the web; the problem even has its own
Wikipedia page! But at least in 2013, the few solutions I found on the web for problem (b)
were all either slower than necessary or incorrect.]

3. This series of exercises asks you to develop efficient algorithms to find optimal subsequences
of various kinds. A subsequence is anything obtained from a sequence by extracting a
subset of elements, but keeping them in the same order; the elements of the subsequence
need not be contiguous in the original sequence. For example, the strings C, DAMN, YAIOAIL,
and DYNAMICPROGRAMMING are all subsequences of the string DYNAMICPROGRAMMING.

(a) Let A[1..m] and B[1..n] be two arbitrary arrays. A common subsequence of A and
B is another sequence that is a subsequence of both A and B. Describe an efficient
algorithm to compute the length of the longest common subsequence of A and B.

(b) Let A[1..m] and B[1..n] be two arbitrary arrays. A common supersequence of A
and B is another sequence that contains both A and B as subsequences. Describe an
efficient algorithm to compute the length of the shortest common supersequence of A
and B.

(c) Call a sequence X[1..n] of numbers bitonic if there is an index i with 1 < i < n, such
that the prefix X[1..i] is increasing and the suffix X[i..n] is decreasing. Describe an
efficient algorithm to compute the length of the longest bitonic subsequence of an
arbitrary array A of integers.

(d) Call a sequence X[1..n] of numbers oscillating if X[i] < X[i + 1] for all even i, and
X[i]> X[i+ 1] for all odd i. Describe an efficient algorithm to compute the length
of the longest oscillating subsequence of an arbitrary array A of integers.

(e) Describe an efficient algorithm to compute the length of the shortest oscillating
supersequence of an arbitrary array A of integers.

(f) Call a sequence X[1..n] of numbers convex if 2 - X[i] < X[i— 1]+ X[i + 1] for
all i. Describe an efficient algorithm to compute the length of the longest convex
subsequence of an arbitrary array A of integers.

(g) Call a sequence X[1..n] of numbers weakly increasing if each element is larger than
the average of the two previous elements; that is, 2-X[i] > X[i — 1]+ X[i — 2] for all

19

Algorithms Lecture 5: Dynamic Programming [Fa’14]

i > 2. Describe an efficient algorithm to compute the length of the longest weakly
increasing subsequence of an arbitrary array A of integers.

(h) Call a sequence X[1..n] of numbers double-increasing if X[i] > X[i—2] for all i > 2.
(In other words, a semi-increasing sequence is a perfect shuffle of two increasing
sequences.) Describe an efficient algorithm to compute the length of the longest
double-increasing subsequence of an arbitrary array A of integers.

*(i) Recall that a sequence X[1..n] of numbers is increasing if X[i] < X[i + 1] for all i.
Describe an efficient algorithm to compute the length of the longest common increasing
subsequence of two given arrays of integers. For example, (1,4,5,6,7,9) is the longest
common increasing subsequence of the sequences (3,1,4,1,5,9,2,6,5,3,5,8,9,7,9, 3)
and (1,4,1,4,2,1,3,5,6,2,3,7,3,0,9,5).

4. Describe an algorithm to compute the number of times that one given array X[1..k]
appears as a subsequence of another given array Y[1..n]. For example, if all characters in
X and Y are equal, your algorithm should return (Z) For purposes of analysis, assume that
adding two £-bit integers requires ©({) time.

5. You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, ElImo has become a much stronger player. Describe and analyze an
algorithm to determine, given the initial sequence of cards, the maximum number of
points that you can collect playing against a perfect opponent.

6. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance
contest you've been training for your entire life, except for that summer you spent with
your uncle in Alaska hunting wolverines. You've obtained an advance copy of the the list of
n songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know that if you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k + 1 through k + Wait[k]). The

20

Algorithms Lecture 5: Dynamic Programming [Fa’14]

dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you
can achieve. The input to your sweet algorithm is the pair of arrays Score[1..n] and
Wait[1..n].

7. You are driving a bus along a highway, full of rowdy, hyper, thirsty students and a soda
fountain machine. Each minute that a student is on your bus, that student drinks one
ounce of soda. Your goal is to drop the students off quickly, so that the total amount of
soda consumed by all students is as small as possible.

You know how many students will get off of the bus at each exit. Your bus begins
somewhere along the highway (probably not at either end) and move s at a constant speed
of 37.4 miles per hour. You must drive the bus along the highway; however, you may drive
forward to one exit then backward to an exit in the opposite direction, switching as often
as you like. (You can stop the bus, drop off students, and turn around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink as little soda
as possible. Your input consists of the bus route (a list of the exits, together with the travel
time between successive exits), the number of students you will drop off at each exit, and
the current location of your bus (which you may assume is an exit).

8. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or
RACECAR, or AMANAPLANACATACANALPANAMA.

(a) Describe and analyze an algorithm to find the length of the longest subsequence
of a given string that is also a palindrome. For example, the longest palindrome
subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so given
that string as input, your algorithm should output the number 11.

(b) Describe and analyze an algorithm to find the length of the shortest supersequence
of a given string that is also a palindrome. For example, the shortest palindrome
supersequence of TWENTYONE is TWENTOYOTNEWT, so given the string TWENTYONE as
input, your algorithm should output the number 13.

(c) Any string can be decomposed into a sequence of palindromes. For example, the
string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes
in the following ways (and many others):

BUB ¢ BASEESAB ¢ ANANA
BeUe*BBe®AeSEES*ABA*NAN®A
BeUe*BBeA<*SEES*A-*B-*ANANA

BeUeBeBeAeSeEeE*S*A*BsA*Ne°ANA

Describe and analyze an efficient algorithm to find the smallest number of palin-
dromes that make up a given input string. For example, given the input string
BUBBASEESABANANA, your algorithm would return the integer 3.

21

Algorithms

Lecture 5: Dynamic Programming [Fa’14]

9. Suppose you have a black-box subroutine QuaLiTy that can compute the ‘quality’ of any
given string A[1..k] in O(k) time. For example, the quality of a string might be 1 if the
string is a Québecois curse word, and O otherwise.

Given an arbitrary input string T[1..n], we would like to break it into contiguous
substrings, such that the total quality of all the substrings is as large as possible. For
example, the string SAINTCIBOIREDESACRAMENTDECRISSE can be decomposed into the
substrings SAINT ® CIBOIRE ® DE ® SACRAMENT * DE ¢ CRISSE, of which three (or possibly
four) are sacres.

Describe an algorithm that breaks a string into substrings of maximum total quality,
using the QUALITY subroutine.

10. (a)

(b)

(o)

(d)

Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y =1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y =1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 4+ y? = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which no
pair of segments intersects.

Suppose we are given a set L of n line segments in the plane, where the endpoints
of each segment lie on the unit circle x2 + y? = 1, and all 2n endpoints are distinct.
Describe and analyze an algorithm to compute the largest subset of L in which every
pair of segments intersects.

11. Let P be a set of n points evenly distributed on the unit circle, and let S be a set of m
line segments with endpoints in P. The endpoints of the m segments are not necessarily
distinct; n could be significantly smaller than 2m.

@

(b)

(o)

(d)

Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is disjoint. Two segments are disjoint if they do not intersect even at their
endpoints.

Describe an algorithm to find the size of the largest subset of segments in S such that
every pair is interior-disjoint. Two segments are interior-disjoint if their intersection
is either empty or an endpoint of both segments.

Describe an algorithm to find the size of the largest subset of segments in S such that
every pair intersects.

Describe an algorithm to find the size of the largest subset of segments in S such that
every pair crosses. Two segments cross if they intersect but not at their endpoints.

For full credit, all four algorithms should run in O(mn) time.

22

Algorithms Lecture 5: Dynamic Programming [Fa’14]

12.

13.

14.

A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANA BAN , , nANA B AN, Ay ANA

ANANAS ANA""'NAS AN"TTATNATTS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of
DYNAMIC and PROGRAMMING:

D~Y,NAM

prOPGYRNAMAmMT INC

G DYproNGARMAMMI C NG
Given three strings A[1..m], B[1..n], and C[1..m+n], describe and analyze an algorithm

to determine whether C is a shuffle of A and B.

Describe and analyze an efficient algorithm to find the length of the longest contiguous
substring that appears both forward and backward in an input string T[1..n]. The forward
and backward substrings must not overlap. Here are several examples:

* Given the input string ALGORITHM, your algorithm should return 0.
* Given the input string RECURSION, your algorithm should return 1, for the substring R.

* Given the input string REDIVIDE, your algorithm should return 3, for the substring
EDI. (The forward and backward substrings must not overlap!)

* Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should re-
turn 4, for the substring YNAM. (In particular, it should not return 6, for the subsequence
YNAMIR).

Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in
1998. Players stand on a platform marked with four arrows, pointing forward, back, left,
and right, arranged in a cross pattern. During play, the game plays a song and scrolls a
sequence of n arrows (€=, 4, 4, or =») from the bottom to the top of the screen. At the
precise moment each arrow reaches the top of the screen, the player must step on the
corresponding arrow on the dance platform. (The arrows are timed so that you'll step with
the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal
is to play perfectly but move as little as possible. When an arrow reaches the top of the
screen, if one of your feet is already on the correct arrow, you are awarded one style point
for maintaining your current pose. If neither foot is on the right arrow, you must move one
(and only one) of your feet from its current location to the correct arrow on the platform.
If you ever step on the wrong arrow, or fail to step on the correct arrow, or move more
than one foot at a time, or move either foot when you are already standing on the correct
arrow, all your style points are taken away and you lose the game.

How should you move your feet to maximize your total number of style points? For
purposes of this problem, assume you always start with you left foot on €= and you right
foot on =¥, and that you’ve memorized the entire sequence of arrows. For example, if the
sequence is TP 4 4 € =» € =», you can earn 5 style points by moving you feet as shown
below:

23

Algorithms Lecture 5: Dynamic Programming [Fa’14]

. T T L2 4 « hd « >
L L
(L] [R]] R] | R] | R] | RI (L] [R][t] [R][L] [R][E] [R
L L
Begin! T Style point! Style point! T Style point! Style point! Style point!

(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4 — 1 style
points.

(b) Describe an efficient algorithm to find the maximum number of style points you can
earn during a given VVR routine. The input to your algorithm is an array Arrow[1..n]
containing the sequence of arrows.

15. Consider the following solitaire form of Scrabble. We begin with a fixed, finite sequence
of tiles; each tile contains a letter and a numerical value. At the start of the game, we
draw the seven tiles from the sequence and put them into our hand. In each turn, we form
an English word from some or all of the tiles in our hand, place those tiles on the table,
and receive the total value of those tiles as points. If no English word can be formed from
the tiles in our hand, the game immediately ends. Then we repeatedly draw the next tile
from the start of the sequence until either (a) we have seven tiles in our hand, or (b) the
sequence is empty. (Sorry, no double/triple word/letter scores, bingos, blanks, or passing.)
Our goal is to obtain as many points as possible.

For example, suppose we are given the tile sequence

L JL% [k JL L s o 0 oo L oo L JL o oL L0 L I L2 e

Then we can earn 68 points as follows:

* We initially draw| I, || N, || Xg || A, || N, || A || D, |

* Play the word| N, || A || I, ” A || D, | for 9 points, leaving in our hand.

* Draw the next five tiles| Us || D, || I, || Dy || Kg |

* Play the word| Us || N, || Dy ” I, || Dy | for 15 points, leaving in our hand.
* Draw the next five tiles| Us || B, || Ly || A ” Kg ‘

* Play the Word| By || Us || L, ” Ke ‘ for 19 points, leaving in our hand.
* Draw the next three tiles , emptying the list.

* Play the word| A || N, || Kg ” Hs | for 16 points, leaving in our hand.

* Play the word for 9 points, emptying our hand and ending the game.

(a) Suppose you are given as input two arrays Letter[1..n], containing a sequence of
letters between A and Z, and Value[A..Z], where Value[£] is the value of letter £.
Design and analyze an efficient algorithm to compute the maximum number of points
that can be earned from the given sequence of tiles.

24

Algorithms Lecture 5: Dynamic Programming [Fa’14]

16.

17.

(b) Now suppose two tiles with the same letter can have different values; you are given
two arrays Letter[1..n] and Value[1..n]. Design and analyze an efficient algorithm to
compute the maximum number of points that can be earned from the given sequence
of tiles.

In both problems, the output is a single number: the maximum possible score. Assume
that you can find all English words that can be made from any set of at most seven tiles,
along with the point values of those words, in O(1) time.

Suppose you are given a DFA M = ({0,1},Q,s,A, &) and a binary string w € {0, 1}*.

(a) Describe and analyze an algorithm that computes the longest subsequence of w that
is accepted by M, or correctly reports that M does not accept any subsequence of w.

*(b) Describe and analyze an algorithm that computes the shortest supersequence of w that
is accepted by M, or correctly reports that M does not accept any supersequence of w.
[Hint: Careful!]

Analyze both of your algorithms in terms of the parameters n = |w| and k = |Q)|.

Vankin’s Mile is an American solitaire game played on an n x n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid below, the player can score 8 -6+ 7 —3 44 = 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

~
|
o
g
|
e}

5

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n x n array of values as input.

(b) In the European version of this game, appropriately called Vankin’s Kilometer, the
player can move the token either one square down, one square right, or one square
left in each turn. However, to prevent infinite scores, the token cannot land on the
same square more than once. Describe and analyze an efficient algorithm to compute
the maximum possible score for a game of Vankin’s Kilometer, given the n x n array
of values as input.!!

117f we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be Ebay-hard.

25

Algorithms Lecture 5: Dynamic Programming [Fa’14]

18.

Suppose you are given an m x n bitmap, represented by an array M[1..n,1..n] of Os and
1s. A solid block in M is a subarray of the form M[i..i’,j..j’] containing only 1-bits. A
solid block is square if it has the same number of rows and columns.

(a) Describe an algorithm to find the maximum area of a solid square block in M in O(n?)
time.
(b) Describe an algorithm to find the maximum area of a solid block in M in 0(n®) time.

*(¢) Describe an algorithm to find the maximum area of a solid block in M in O(n?) time.

. Describe and analyze an algorithm to solve the traveling salesman problem in O(2" poly(n))

time. Given an undirected n-vertex graph G with weighted edges, your algorithm should
return the weight of the lightest cycle in G that visits every vertex exactly once, or oo if G
has no such cycles. [Hint: The obvious recursive algorithm takes O(n!) time.]

BRUTE-FORCE DYNAMIC »
SOLUTION: PROGRAMMING SELUNG ON ERAY:
() ALGORTHMS: o(1)
n: O (n*2")
STILL WORKING
ON YOUR ROUTE?
\
\
SHUT THE
HEW UR

— Randall Munroe, xkcd (http://xkcd.com/399/)

Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

. Let . = {A;,A,,...,A,} be a finite set of strings over some fixed alphabet 3. An edit

center for .« is a string C € X* such that the maximum edit distance from C to any string
in .o/ is as small as possible. The edit radius of ./ is the maximum edit distance from an
edit center to a string in .«/. A set of strings may have several edit centers, but its edit
radius is unique.

EditRadius(.«/) = min max Edit(A, C) EditCenter(./) = argmin max Edit(A, C)
Cexr A Ceyx Aed
(a) Describe and analyze an efficient algorithm to compute the edit radius of three given
strings.

(b) Describe and analyze an efficient algorithm to approximate the edit radius of an
arbitrary set of strings within a factor of 2. (Computing the exact edit radius is
NP-hard unless the number of strings is fixed.)

. Let D[1..n] be an array of digits, each an integer between 0 and 9. An digital subsequence

of D is a sequence of positive integers composed in the usual way from disjoint substrings
of D. For example, 3,4,5,6,8,9,32,38,46,64,83,279 is a digital subsequence of the first
several digits of 7:

EI) 17 i’]‘7 |§|’ 9’2’ El, 57 3) 57 |§|, 2') 7’ 9) Iﬂ) ﬁ) |4-,_6|’ 2) |6’_4|, 37 3) Iﬁ’ 2) 7’9

26

Algorithms Lecture 5: Dynamic Programming [Fa’14]

The length of a digital subsequence is the number of integers it contains, not the number of
digits; the preceding example has length 12. As usual, a digital subsequence is increasing
if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest increasing digital
subsequence of D. [Hint: Be careful about your computational assumptions. How long does
it take to compare two k-digit numbers?]

For full credit, your algorithm should run in O(n*) time; faster algorithms are worth
extra credit. The fastest algorithm I know for this problem runs in O(n?logn) time;
achieving this bound requires several tricks, both in the algorithm and in its analysis.

Splitting Sequences/Arrays

22. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4]+ M[2,5]+ M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1..n,1..n] posted on the wall behind the
Round Table, where M[i,j] = M[j,i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

23. Suppose you are given a sequence of integers separated by + and x signs; for example:

1+43x2x0+1x6+7

27

Algorithms Lecture 5: Dynamic Programming [Fa’14]

You can change the value of this expression by adding parentheses in different places. For
example:

(1+(3x2)x0+(1x6)+7=13
(1+@Bx2x0)+1)x6)+7=19
(1+3)x2x(0+1)x(6+7)=208

(a) Describe and analyze an algorithm to compute the maximum possible value the given

expression can take by adding parentheses, assuming all integers in the input are
positive. [Hint: This is easy.]

(b) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, assuming all integers in the input are
non-negative.

(c) Describe and analyze an algorithm to compute the maximum possible value the given
expression can take by adding parentheses, with no further restrictions on the input.

Assume any arithmetic operation takes O(1) time.

24. Suppose you are given a sequence of integers separated by + and — signs; for example:
1+3—2—-54+1—-6+7

You can change the value of this expression by adding parentheses in different places. For
example:

1+3—-2-54+41—-6+7=-1
1+3—(2-5)+(1—-6)+7=9
1+@B=2)-0GB+1)—(6+7)=-17
Describe and analyze an algorithm to compute, given a list of integers separated by + and
— signs, the maximum possible value the expression can take by adding parentheses.

You may only use parentheses to group additions and subtractions; in particular, you
are not allowed to create implicit multiplication as in 1 + 3(—2)(—5)+1—6+7 = 33.

25. A basic arithmetic expression is composed of characters from the set {1,+, x} and
parentheses. Almost every integer can be represented by more than one basic arithmetic
expression. For example, all of the following basic arithmetic expression represent the
integer 14:

1+1+1+14+14+1414+14+14+14+14+14+14+14+1+1
(A+D)xA+1+1+1+1D)D+((1+1)x(1+1))
AI+D)x(A+14+14+1+14+1+1)
A+ x(1+1+1)x(1+1)+1)
Describe and analyze an algorithm to compute, given an integer n as input, the minimum
number of 1’s in a basic arithmetic expression whose value is n. The number of parentheses
doesn’t matter, just the number of 1’s. For example, when n = 14, your algorithm should

return 8, for the final expression above. For full credit, the running time of your algorithm
should be bounded by a small polynomial function of n.

28

Algorithms Lecture 5: Dynamic Programming [Fa’14]

26.

27.

28.

After graduating from UIUC, you have decided to join the Wall Street Bank Long Live
Boole. The managing director of the bank, Eloob Egroeg, is a genius mathematician who
worships George Boole (the inventor of Boolean Logic) every morning before leaving for
the office. The first day of every hired employee is a ’solve-or-die’ day where s/he has to
solve one of the problems posed by Eloob within 24 hours. Those who fail to solve the
problem are fired immediately!

Entering into the bank for the first time, you notice that the offices of the employees
are organized in a straight row, with a large T or F printed on the door of each office.
Furthermore, between each adjacent pair of offices, there is a board marked by one of
the symbols A, V, or &. When you ask about these arcane symbols, Eloob confirms that
T and F represent the boolean values TRUE and FALSE, and the symbols on the boards
represent the standard boolean operators AND, OR, and Xor. He also explains that these
letters and symbols describe whether certain combinations of employees can work together
successfully. At the start of any new project, Eloob hierarchically clusters his employees
by adding parentheses to the sequence of symbols, to obtain an unambiguous boolean
expression. The project is successful if this parenthesized boolean expression evaluates
toT.

For example, if the bank has three employees, and the sequence of symbols on and
between their doors is T A F & T, there is exactly one successful parenthesization scheme:
(T A(F @ T)). However, if the list of door symbols is F A T & F, there is no way to add
parentheses to make the project successful.

Eloob finally poses your solve-or-die question: Describe and algorithm to decide whether
a given sequence of symbols can be parenthesized so that the resulting boolean expression
evaluates to T. The input to your algorithm is an array S[0..2n], where S[i] € {T,F}
when i is even, and S[i] € {V, A, ®} when i is odd.

Suppose we want to display a paragraph of text on a computer screen. The text consists of
n words, where the ith word is p; pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we must
insert different amounts of white space between the words. The paragraph should be fully
justified, meaning that the first word on each line starts at its leftmost pixel, and except
for the last line, the last character on each line ends at its rightmost pixel. There must be
at least one pixel of white-space between any two words on the same line. For example,
the width of the paragraph you are reading right now is exactly 6% inches or (assuming a
display resolution of 600 pixels per inch) exactly 3672% pixels. (Sometimes TiX is weird.
But thanks to anti-aliasing, fractional pixel widths are fine.)

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line, not counting the one pixel required
between every adjacent pair of words. Specifically, if a line contains words i through j,
then the slop of that line is (P —j+i=>Y)3 Describe a dynamic programmin

P J k=i Pk) - y prog g
algorithm to print the paragraph with minimum slop.

You have mined a large slab of marble from your quarry. For simplicity, suppose the marble
slab is a rectangle measuring n inches in height and m inches in width. You want to cut the
slab into smaller rectangles of various sizes—some for kitchen countertops, some for large

29

Algorithms Lecture 5: Dynamic Programming [Fa’14]

29.

30.

sculpture projects, others for memorial headstones. You have a marble saw that can make
either horizontal or vertical cuts across any rectangular slab. At any time, you can query
the spot price P[x, y] of an x-inch by y-inch marble rectangle, for any positive integers x
and y. These prices will vary with demand, so do not make any assumptions about them;
in particular, larger rectangles may have much smaller spot prices. Given the spot prices,
describe an algorithm to compute how to subdivide an n x m marble slab to maximize your
profit.

A string w of parentheses (and) and brackets [and 1 is balanced if it satisfies one of
the following conditions:

* wis the empty string.
* w= (x) for some balanced string x
* w= [x] for some balanced string x

* w = xy for some balanced strings x and y

For example, the string
w=([OII1O)TIOO]10)

is balanced, because w = xy, where

x=(IO1I1(0) and y=10O10Q.

(a) Describe and analyze an algorithm to determine whether a given string of parentheses
and brackets is balanced.

(b) Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets.

(c) Describe and analyze an algorithm to compute the length of a shortest balanced
supersequence of a given string of parentheses and brackets.

(d) Describe and analyze an algorithm to compute the minimum edit distance from a
given string of parentheses and brackets to a balanced string of parentheses and
brackets.

For each problem, your input is an array w[1..n], where w[i] € {(,), [, 1} for every
index i.

Congratulations! Your research team has just been awarded a $50M multi-year project,
jointly funded by DARPA, Google, and McDonald’s, to produce DWIM: The first compiler
to read programmers’ minds! Your proposal and your numerous press releases all promise
that DWIM will automatically correct errors in any given piece of code, while modifying
that code as little as possible. Unfortunately, now it’s time to start actually making the
damn thing work.

As a warmup exercise, you decide to tackle the following necessary subproblem. Recall
that the edit distance between two strings is the minimum number of single-character
insertions, deletions, and replacements required to transform one string into the other. An
arithmetic expression is a string w such that

* w is a string of one or more decimal digits,

30

Algorithms Lecture 5: Dynamic Programming [Fa’14]

31.

32.

33-

* w= (x) for some arithmetic expression x, or

* w = Xx ¢y for some arithmetic expressions x and y and some binary operator <.

Suppose you are given a string of tokens from the alphabet {#, o, (,) }, where # represents
a decimal digit and ¢ represents a binary operator. Describe an algorithm to compute the
minimum edit distance from the given string to an arithmetic expression.

Let P be a set of points in the plane in convex position. Intuitively, if a rubber band were
wrapped around the points, then every point would touch the rubber band. More formally,
for any point p in P, there is a line that separates p from the other points in P. Moreover,
suppose the points are indexed P[1],P[2],..., P[n] in counterclockwise order around the
‘rubber band’, starting with the leftmost point P[1].

This problem asks you to solve a special case of the traveling salesman problem, where
the salesman must visit every point in P, and the cost of moving from one point p € P to
another point q € P is the Euclidean distance |pq|.

(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P must be
simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P that
starts at the leftmost point P[1] and ends at the rightmost point P[r].

(d) Describe and analyze an efficient algorithm to compute the shortest tour of P, with
no restrictions on the endpoints.

(a) Describe and analyze an efficient algorithm to determine, given a string w and a
regular expression R, whether w € L(R).

(b) Generalized regular expressions allow the binary operator N (intersection) and the
unary operator - (complement), in addition to the usual concatenation, + (or), and
* (Kleene closure) operators. NFA constructions and Kleene’s theorem imply that any
generalized regular expression E represents a regular language L(E).

Describe and analyze an efficient algorithm to determine, given a string w and a
generalized regular expression E, whether w € L(E).

In both problems, assume that you are actually given a parse tree for the (generalized)
regular expression, not just a string.

Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an
RNA molecule is a string b[1..n], where each character b[i] € {A,C,G, U} corresponds
to a base. In addition to the chemical bonds between adjacent bases in the sequence,
hydrogen bonds can form between certain pairs of bases. The set of bonded base pairs is
called the secondary structure of the RNA molecule.

We say that two base pairs (i, j) and (i’, j) withi < jand i’ < j' overlapifi <i’ < j < j’
ori’ <i < j’ <j. In practice, most base pairs are non-overlapping. Overlapping base pairs
create so-called pseudoknots in the secondary structure, which are essential for some RNA
functions, but are more difficult to predict.

31

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Suppose we want to predict the best possible secondary structure for a given RNA
sequence. We will adopt a drastically simplified model of secondary structure:

* Each base can be paired with at most one other base.
* Only A-U pairs and C-G pairs can bond.

e Pairs of the form (i,i + 1) and (i,i + 2) cannot bond.
* Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.

Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 + 22+ 82 + 12+ 72+ 4% + 72 =187

(a) Describe and analyze an algorithm that computes the maximum possible number of
bonded base pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps
lead to chemical instabilities, so secondary structures with smaller gaps are more
likely. To account for this preference, let’s define the score of a secondary structure to
be the sum of the squares of the gap lengths. (This score function is utterly fictional,
real RNA structure prediction requires much more complicated scoring functions.)
Describe and analyze an algorithm that computes the minimum possible score of a
secondary structure for a given RNA sequence.

34. A standard method to improve the cache performance of search trees is to pack more
search keys and subtrees into each node. A B-tree is a rooted tree in which each internal
node stores up to B keys and pointers to up to B + 1 children, each the root of a smaller
B-tree. Specifically, each node v stores three fields:

* a positive integer v.d < B,
* asorted array v.key[1..v.d], and
* an array v.child[0..v.d] of child pointers.

32

Algorithms Lecture 5: Dynamic Programming [Fa’14]

In particular, the number of child pointers is always exactly one more than the number of
keys.

Each pointer v.child[i] is either NULL or a pointer to the root of a B-tree whose keys
are all larger than v.key[i] and smaller than v.key[i + 1]. In particular, all keys in the
leftmost subtree v.child[0] are smaller than v.key[1], and all keys in the rightmost subtree
v.child[v.d] are larger than v.key[v.d].

Intuitively, you should have the following picture in mind:

[+ <key[l]< e <key[2]<e -+ o <key[d]<+]
T, T Ty -+ Ty, T,

Here T; is the subtree pointed to by child[i].

The cost of searching for a key x in a B-tree is the number of nodes in the path from
the root to the node containing x as one of its keys. A 1-tree is just a standard binary
search tree.

Fix an arbitrary positive integer B > 0. (I suggest B = 8.) Suppose your are given a
sorted array A[1,...,n] of search keys and a corresponding array F[1,...,n] of frequency
counts, where F[i] is the number of times that we will search for A[i]. Your task is to
describe and analyze an efficient algorithm to find a B-tree that minimizes the total cost of
searching for the given keys with the given frequencies.

(a) Describe a polynomial-time algorithm for the special case B = 2.

(b) Describe an algorithm for arbitrary B that runs in O(n®*¢) time for some fixed
integer c.

(c) Describe an algorithm for arbitrary B that runs in O(n°®) time for some fixed integer ¢
that does not depend on B.

A few comments about B-trees. Normally, B-trees are required to satisfy two additional
constraints, which guarantee a worst-case search cost of O(logg n): Every leaf must
have exactly the same depth, and every node except possibly the root must contain
at least B/2 keys. However, in this problem, we are not interested in optimizing the
worst-case search cost, but rather the total cost of a sequence of searches, so we will not
impose these additional constraints.

In most large database systems, the parameter B is chosen so that each node exactly
fits in a cache line. Since the entire cache line is loaded into cache anyway, and the
cost of loading a cache line exceeds the cost of searching within the cache, the running
time is dominated by the number of cache faults. This effect is even more noticeable
if the data is too big to fit in RAM; then the cost is dominated by the number of page
faults, and B should be roughly the size of a page. In extreme cases, the data is too
large even to fit on disk (or flash-memory “disk”) and is instead distributed on a bank of
magnetic tape cartridges, in which case the cost is dominated by the number of tape
faults. (I invite anyone who thinks tape is dead to visit a supercomputing center like
Blue Waters.) In principle, your data might be so large that the cost of searching is
actually dominated by the number of FedEx faults. (See https://what-if.xked.com/31/.)

Don’t worry about the cache/disk/tape/FedEx performance in your solutions; just
analyze the CPU time as usual. Designing algorithms with few cache misses or page
faults is a interesting pastime; simultaneously optimizing CPU time and cache misses
and page faults and FedEx faults is a topic of active research. Sadly, this kind of design
and analysis requires tools we won't see in this class.

33

Algorithms Lecture 5: Dynamic Programming [Fa’14]

Trees and Subtrees

35-

36.

37-

38.

Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only
the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children. Design an algorithm to compute the minimum
number of rounds required for the message to be delivered to all nodes in a given tree.

® ®
(@ ® O] ®
OO ® @Oe0® ®
Oo® OJO) OJO) OJO)
O ®

A message being distributed through a tree in five rounds.

Oh, no! You have been appointed as the organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: an employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all. Give an algorithm that makes a guest list for the party that maximizes
the sum of the “fun” ratings of the guests.

Since so few people came to last year’s holiday party, the president of Giggle, Inc. decides
to give each employee a present instead this year. Specifically, each employee must receive
on the three gifts: (1) an all-expenses-paid six-week vacation anywhere in the world, (2) an
all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack Stack
Shack, or (3) a burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving exactly the same gift as his/her direct supervisor. Any employee
who receives a better gift than his/her direct supervisor will almost certainly be fired in a
fit of jealousy.

As Giggle, Inc.’s official party czar, it’s your job to decide which gift each employee
receives. Describe an algorithm to distribute gifts so that the minimum number of people
are fired. Yes, you may send the president a flaming bag of dog poop.

More formally, you are given a rooted tree T, representing the company hierarchy, and
you want to label each node in T with an integer 1, 2, or 3, so that every node has a
different label from its parent. The cost of an labeling is the number of nodes that have
smaller labels than their parents. Describe and analyze an algorithm to compute the
minimum cost of any labeling of the given tree T.

After losing so many employees to last year’s Flaming Dog Poop Holiday Debacle, the
president of Giggle, Inc. has declared that once again there will be a holiday party this
year. Recall that the employees are organized into a strict hierarchy, that is, a tree with the
company president at the root. The president demands that you invite exactly k employees,

34

Algorithms Lecture 5: Dynamic Programming [Fa’14]

39.

A tree labeling with cost 9.
Bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

including the president herself. Moreover, everyone who is invited is required to attend.
Yeah, that’ll be fun.

The all-knowing oracles in Human Resources have assigned a real number to each
employee indicating the awkwardness of inviting both that employee and their immediate
supervisor; a negative value indicates that the employee and their supervisor actually
like each other. Your goal is to choose a subset k employees to invite, so that the total
awkwardness of the resulting party is as small as possible. For example, if the guest list
does not include both an employee and their immediate supervisor, the total awkwardness
is zero.

(a) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, assuming the company hierarchy is described by a binary tree.
That is, assume that each employee directly supervises at most two others.

*(b) Describe an algorithm that computes the total awkwardness of the least awkward
subset of k employees, with no restrictions on the company hierarchy.

Let T be a rooted binary tree with n vertices, and let k < n be a positive integer. We would
like to mark k vertices in T so that every vertex has a nearby marked ancestor. More
formally, we define the clustering cost of any subset K of vertices as

cost(K) = max cost(v,K),
v
where the maximum is taken over all vertices v in the tree, and

0 ifvek
cost(v,K) =14 oo if vistherootof T and v € K
1 + cost(parent(v)) otherwise

Describe and analyze a dynamic-programming algorithm to compute the minimum
clustering cost of any subset of k vertices in T. For full credit, your algorithm should run in
0(n%k?) time.

35

Algorithms

Lecture 5: Dynamic Programming [Fa’14]

A subset of 5 vertices with clustering cost 3

The next several questions ask for algorithms to find various optimal subtrees in trees. To
make the problem statements precise, we must distinguish between several different types of
trees and subtrees:

By default, a tree is just a connected, acyclic, undirected graph.

A rooted tree has a distinguished vertex, called the root. A tree without a distinguished
root vertex is called an unrooted tree or a free tree.

In an ordered tree, the neighbors of every vertex have a well-defined cyclic order. A tree
without these orders is called an unordered tree.

A binary tree is a rooted tree in which every node has a (possibly empty) left subtree
and a (possibly empty) right subtree. Two binary trees are isomorphic if they are both
empty, or if their left subtrees are isomorphic and their right subtrees are isomorphic.
A (rooted) subtree of a rooted tree consists of a node and all its descendants. A (free)
subtree of an unrooted tree is any connected subgraph. Subtrees of ordered rooted
trees are themselves ordered trees.

40. This question asks you to find efficient algorithms to compute the largest common rooted
subtree of two given rooted trees. A rooted subtree consists of an arbitrary node and all
its descendants. However, the precise definition of “common” depends on which rooted
trees we consider to be isomorphic.

(a) Describe an algorithm to find the largest common binary subtree of two given binary
trees.

Two binary trees, with their largest common (rooted) subtree emphasized

(b) An ordered tree is either empty or a node with a sequence of children, which are
themselves the roots of (possibly empty) ordered trees. Two ordered trees are
isomorphic if they are both empty, or if their ith subtrees are isomorphic for all i.
Describe an algorithm to find the largest common ordered subtree of two ordered
trees T; and T.

36

Algorithms

Lecture 5: Dynamic Programming [Fa’14]

()]

An unordered tree is either empty or a node with a set of children, which are themselves
the roots of (possibly empty) ordered trees. Two unordered trees are isomorphic
if they are both empty, or the subtrees or each tree can be ordered so that their ith
subtrees are isomorphic for all i. Describe an algorithm to find the largest common
unordered subtree of two unordered trees T; and Ts.

41. This question asks you to find efficient algorithms to compute optimal subtrees in unrooted
trees. A subtree of an unrooted tree is any connected subgraph.

42.

@

(b)

(o)

*(d)

Suppose you are given an unrooted tree T with weights on its edges, which may be
positive, negative, or zero. Describe an algorithm to find a path in T with maximum
total weight.

Suppose you are given an unrooted tree T with weights on its vertices, which may
be positive, negative, or zero. Describe an algorithm to find a subtree of T with
maximum total weight.

Let T; and T, be ordered trees, meaning that the neighbors of every node have a
well-defined cyclic order. Describe an algorithm to find the largest common ordered
subtree of T; and T,.

Let T; and T, be unordered trees. Describe an algorithm to find the largest common
unordered subtree of T; and T,.

Sub-branchings of a rooted tree are a generalization of subsequences of a sequence. A
sub-branching of a tree is a subset S of the nodes such that exactly one node in S that does
not have a proper ancestor in S. Any sub-branching S implicitly defines a tree T(S), in
which the parent of a node x € S is the closest proper ancestor (in T) of x that is also in S.

@

(b)

A sub-branching S and its associated tree T(S).

Let T be a rooted tree with labeled nodes. We say that T is boring if, for each node x,
all children of x have the same label; children of different nodes may have different
labels. A sub-branching S of a labeled rooted tree T is boring if its associated tree
T(S) is boring; nodes in T(S) inherit their labels from T. Describe an algorithm to
find the largest boring sub-branching S of a given labeled rooted tree.

Suppose we are given a rooted tree T whose nodes are labeled with numbers.
Describe an algorithm to find the largest heap-ordered sub-branching of T. That is,
your algorithm should return the largest sub-branching S such that every node in
T(S) has a smaller label than its children in T(S).

37

Algorithms

Lecture 5: Dynamic Programming [Fa’14]

()]

(d

*(e)

* ()

Suppose we are given a binary tree T whose nodes are labeled with numbers. Describe
an algorithm to find the largest binary-search-ordered sub-branching of T. That is,
your algorithm should return a sub-branching S such that every node in T(S) has at
most two children, and an inorder traversal of T(S) is an increasing subsequence of
an inorder traversal of T.

Recall that a rooted tree is ordered if the children of each node have a well-defined
left-to-right order. Describe an algorithm to find the largest binary-search-ordered
sub-branching S of an arbitrary ordered tree T whose nodes are labeled with numbers.
Again, the order of nodes in T(S) should be consistent with their order in T.

Describe an algorithm to find the largest common ordered sub-branching of two
ordered labeled rooted trees.

Describe an algorithm to find the largest common unordered sub-branching of two
unordered labeled rooted trees. [Hint: This problem will be much easier after you’ve
seen flows.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

38

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

It is a very sad thing that nowadays there is so little
useless information.
— Oscar Wilde, “A Few Maxims for the Instruction
Of The Over-Educated” (1894)

Ninety percent of science fiction is crud.
But then, ninety percent of everything is crud,
and it’s the ten percent that isn’t crud that is important.

— [Theodore] Sturgeon’s Law (1953)

*6 Advanced Dynamic Programming

Dynamic programming is a powerful technique for efficiently solving recursive problems, but
it’s hardly the end of the story. In many cases, once we have a basic dynamic programming
algorithm in place, we can make further improvements to bring down the running time or the
space usage. We saw one example in the Fibonacci number algorithm. Buried inside the naive
iterative Fibonacci algorithm is a recursive problem—computing a power of a matrix—that can
be solved more efficiently by dynamic programming techniques—in this case, repeated squaring.

6.1 Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our edit
distance algorithm from O(mn) to O(m + n) by only storing the current and previous rows of
the memoization table. This ‘sliding window’ technique provides an easy space improvement for
most (but not all) dynamic programming algorithm.

Unfortunately, this technique seems to be useful only if we are interested in the cost of the
optimal edit sequence, not if we want the optimal edit sequence itself. By throwing away most
of the table, we apparently lose the ability to walk backward through the table to recover the
optimal sequence.

Fortunately for memory-misers, in 1975 Dan Hirshberg discovered a simple divide-and-conquer
strategy that allows us to compute the optimal edit sequence in O(mn) time, using just O(m + n)
space. The trick is to record not just the edit distance for each pair of prefixes, but also a single
position in the middle of the optimal editing sequence for that prefix. Specifically, any optimal
editing sequence that transforms A[1..m] into B[1..n] can be split into two smaller editing
sequences, one transforming A[1..m/2] into B[1..h] for some integer h, the other transforming
Alm/2+1..m]into B[h+1..n].

To compute this breakpoint h, we define a second function Half(i, j) such that some optimal
edit sequence from A[1..i] into B[1..j] contains an optimal edit sequence from A[1..m/2] to
B[1..Half(i, j)]. We can define this function recursively as follows:

(0o ifi <m/2

j ifi=m/2
Half(i,j) = { Half(i— 1, j) if i > m/2 and Edit(i, j) = Edit(i—1,j) + 1
Half(i,j—1) if i > m/2 and Edit(i, j) = Edit(i, j — 1) + 1
\Half(i—1,j—1) otherwise

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

(Because there there may be more than one optimal edit sequence, this is not the only correct
definition.) A simple inductive argument implies that Half(m, n) is indeed the correct value of h.
We can easily modify our earlier algorithm so that it computes Half(m, n) at the same time as the
edit distance Edit(m, n), all in O(mn) time, using only O(m) space.

Edit Half

@3 8 8 8 8
=8 3888 3|>»
Vg8 388 8|
w3 g8 B 8|
~8 888 8|e
g gy Y=
o3 8 8 8 8|+
~ g 888 8|
©8 8§ 8 8 8|=<T
©g3 888 8=

cxXxAHdr >

OH - 0nHGC>XArr >

© O ~NOUDA WNFH O
OO ~NOOUA WNROKRH|>
0O NOOU A WNRHEOO RN
O NOOUA WNRERNWO
0O NOoOUTA WNNNWARAO
0O NOUA WNWWRUU|D
NoOouUuDbDwwwasDdDu olH
oA DDA A
oOuvululululul Ll oo N |
<)) o M) Mo Mo Mo) Mo)IREN I Vo) i<

OH - W0nH
o000
T el
NN NNN
wwwww
~ b A D
[S, T, BC, T, T
(SN, BT BT, I,
(SIS, BT, T, G, |
[S, I, IS, T, I, |

=
[<)

(SR, RO, R, T, |

Finally, to compute the optimal editing sequence that transforms A into B, we recursively
compute the optimal sequences transforming A[1..m/2] into B[1.. Half(m, n)] and transforming
A[lm/2+ 1..m] into B[Half(m,n) + 1..n]. The recursion bottoms out when one string has only
constant length, in which case we can determine the optimal editing sequence in linear time
using our old dynamic programming algorithm. The running time of the resulting algorithm
satisfies the following recurrence:

O(n) ifm<1
T(m,n) =4 O(m) ifn<1
O(mn)+ T(m/2,h)+ T(m/2,n—h) otherwise

It’s easy to prove inductively that T (m, n) = O(mn), no matter what the value of h is. Specifically,
the entire algorithm’s running time is at most twice the time for the initial dynamic programming
phase.

T(m,n) <amn+T(m/2,h)+ T(m/2,n—h)
< amn+2amh/2+2am(n—h)/2 [inductive hypothesis]

= 2amn

A similar inductive argument implies that the algorithm uses only O(n + m) space.

Hirschberg’s divide-and-conquer trick can be applied to almost any dynamic programming
problem to obtain an algorithm to construct an optimal structure (in this case, the cheapest edit
sequence) within the same space and time bounds as computing the cost of that optimal structure
(in this case, edit distance). For this reason, we will almost always ask you for algorithms to
compute the cost of some optimal structure, not the optimal structure itself.

6.2 Saving Time: Sparseness

In many applications of dynamic programming, we are faced with instances where almost every
recursive subproblem will be resolved exactly the same way. We call such instances sparse.
For example, we might want to compute the edit distance between two strings that have few
characters in common, which means there are few “free” substitutions anywhere in the table.

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

Most of the table has exactly the same structure. If we can reconstruct the entire table from just
a few key entries, then why compute the entire table?

To better illustrate how to exploit sparseness, let’s consider a simplification of the edit distance
problem, in which substitutions are not allowed (or equivalently, where a substitution counts as
two operations instead of one). Now our goal is to maximize the number of “free” substitutions,
or equivalently, to find the longest common subsequence of the two input strings.

Fix the two input strings A[1..n] and B[1..m]. For any indices i and j, let LCS(i, j) denote
the length of the longest common subsequence of the prefixes A[1..i] and B[1..j]. This function
can be defined recursively as follows:

0 ifi=0o0rj=0
LCS(i,j)={ LCS(i—1,j—1)+1 if Ali]=B[j]
max {LCS(i,j—1), LCS(i—1,j)} otherwise
This recursive definition directly translates into an O(mn)-time dynamic programming algorithm.
Call an index pair (i, j) a match point if A[i] = B[j]. In some sense, match points are the

only ‘interesting’ locations in the memoization table; given a list of the match points, we could
easily reconstruct the entire table.

« ALGORITHMS »

R L R
) R
N
TG | e
R|: 35

Ul :

Al gt
S| X 5
T B A
1[d L4

C } 4 &

(<)}

The LCS memoization table for ALGORITHMS and ALTRUISTIC; the brackets « and » are sentinel characters.

More importantly, we can compute the LCS function directly from the list of match points
using the following recurrence:

0 ifi=j=0
LCS(i,j) = { max {LCS(i’,j’) | A[i']=B[j’] and i’ <iand j’ < j} +1 if Ali]=B[j]
max {LCS(i’,j') | Ali'] = B[j’] and i’ < i and j’ < j} otherwise

(Notice that the inequalities are strict in the second case, but not in the third.) To simplify
boundary issues, we add unique sentinel characters A{l0] = B[0] and Alm+ 1] = B[n+ 1] to both
strings. This ensures that the sets on the right side of the recurrence equation are non-empty,
and that we only have to consider match points to compute LCS(m,n) =LCS(m+1,n+1)—1.

If there are K match points, we can actually compute them all in O(mlogm + nlogn + K)
time. Sort the characters in each input string, but remembering the original index of each
character, and then essentially merge the two sorted arrays, as follows:

Algorithms

Lecture 6: Advanced Dynamic Programming [Sp’14]

To efficiently evaluate our modified recurrence, we once again turn to dynamic programming.
We consider the match points in lexicographic order—the order they would be encountered in a
standard row-major traversal of the m x n table—so that when we need to evaluate LCS(i, j), all

FiINDMaTcHES(A[1..m],B[1..n]):
forie—1tom: I[i]«i
forje—1ton: J[jlej

sort A and permute I to match
sort B and permute J to match
ie—1; j<1
whilei <mand j <n

if Ali] < B[j]

ie—1i+1
else if A[i] > B[]
je—j+1
else {(Found a match!))
i1
while A[ii] = A[i]
JjeJ

while B[jj]=B[j]
report (I[ii],J[jj])
Jjje<Jjji+1
iie—i+1
il j e

match points (i’, ;") with i’ < i and j’ < j have already been evaluated.

SPARSELCS(A[1..m],B[1..n]):

Match[1..K] « FINDMATcHES(A, B)
Match[K +1] < (m+1,n+1) {(Add end sentinel))
Sort M lexicographically
forke—1toK
(i,j) « Match[k]
LCS[k] <1 {(From start sentinel))
for{ —1tok—1
(i’,j’) « Match[{]
ifi'<iandj <j
LCS[k] <« min{LCS[k],1+ LCS[¢]}
return LCS[K +1]—1

The overall running time of this algorithm is O(mlogm + nlogn + K?). So as long as
K = o(4/mn), this algorithm is actually faster than naive dynamic programming.

6.3 Saving Time: Monotonicity

The SMAWK matrix-searching algorithm is a better example here; the problem is more general,
the algorithm is simpler, and the proof is self-contained. Next time!

Recall the optimal binary search tree problem from the previous lecture. Given an array
F[1..n] of access frequencies for n items, the problem it to compute the binary search tree that
minimizes the cost of all accesses. A relatively straightforward dynamic programming algorithm
solves this problem in O(n®) time.

As for longest common subsequence problem, the algorithm can be improved by exploiting
some structure in the memoization table. In this case, however, the relevant structure isn’t in the

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

table of costs, but rather in the table used to reconstruct the actual optimal tree. Let OptRoot[1i, j]
denote the index of the root of the optimal search tree for the frequencies F[i .. j]; this is always
an integer between i and j. Donald Knuth proved the following nice monotonicity property for
optimal subtrees: If we move either end of the subarray, the optimal root moves in the same
direction or not at all. More formally:

OptRootli, j— 1] < OptRoot[i, j] < OptRoot[i +1,j] for all i and j.

This (nontrivial!) observation leads to the following more efficient algorithm:

FASTEROPTIMALSEARCHTREE(f[1..n]): CoMPUTECOSTANDROOT(, j):

INITF(f[1..n]) OptCost[i,j] « oo
fori < 1 downto n

OptCost[i,i—1] <0
OptRoot[i,i —1] « i
ford —0Oton
forie—1ton
CompUTECOSTANDROOT(i,i + d)
return OptCost{1,n] OptCost[i, j] < OptCost[i, j] + F[i, j]

for r « OptRoot[i,j—1] to OptRoot[i + 1, j]
tmp « OptCost[i,r — 1]+ OptCost[r + 1, j]
if OptCost[i, j] > tmp

OptCost[i, j] « tmp
OptRoot[i,jl < r

It’s not hard to see that the loop index r increases monotonically from 1 to n during each
iteration of the outermost for loop of FASTEROPTIMALSEARCHTREE. Consequently, the total cost
of all calls to CoMPUTECOSTANDROOT is only O(n?).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1.. n] are all stored at the
leaves, and intermediate pivot values are stored at the internal nodes. An algorithm discovered
by Ching Hu and Alan Tucker! computes the optimal binary search tree in this setting in only
O(nlogn) time!

6.4 Saving Time: Four Russians

Some day.

Exercises

1. Describe an algorithm to compute the edit distance between two strings A[1..m] and
B[1...n]in O(mlogm + nlogn+K?) time, where K is the number of match points. [Hint:
Use the FINDMATCHES algorithm on page 3 as a subroutine.]

2. (a) Describe an algorithm to compute the longest increasing subsequence of a string
X[1..n]in O(nlogn) time.
(b) Using your solution to part (a) as a subroutine, describe an algorithm to compute the
longest common subsequence of two strings A[1..m] and B[1...n] in O(mlogm +
nlogn + K logK) time, where K is the number of match points.

IT. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Applied
Math. 21:514-532, 1971. For a slightly simpler algorithm with the same running time, see A. M. Garsia and M. L. Wachs,
A new algorithms for minimal binary search trees, SIAM J. Comput. 6:622-642, 1977. The original correctness proofs
for both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L. Larmore, and Wojciech
Rytter, Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer Science, 180:309-324, 1997.

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’14]

3. Describe an algorithm to compute the edit distance between two strings A[1..m] and
B[1...n] in O(mlogm + nlogn + K logK) time, where K is the number of match points.
[Hint: Combine your answers for problems 1 and 2(b).]

4. Let T be an arbitrary rooted tree, where each vertex is labeled with a positive integer. A
subset S of the nodes of T is heap-ordered if it satisfies two properties:

* S contains a node that is an ancestor of every other node in S.

* For any node v in S, the label of v is larger than the labels of any ancestor of v in S.

A heap-ordered subset of nodes in a tree.

(a) Describe an algorithm to find the largest heap-ordered subset S of nodes in T that
has the heap property in O(n?) time.

(b) Modify your algorithm from part (a) so that it runs in O(nlogn) time when T is a
linked list. [Hint: This special case is equivalent to a problem you’ve seen before.]

*(c) Describe an algorithm to find the largest subset S of nodes in T that has the heap
property, in O(nlogn) time. [Hint: Find an algorithm to merge two sorted lists of
lengths k and £ in O(log (k',:l)) time.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
Greed in all its forms, greed for life, money, love, knowledge has marked the
upward surge in mankind. And greed—mark my words—will save not only Teldar
Paper but the other malfunctioning corporation called the USA.

— Gordon Gekko [Michael Douglas], Wall Street (1987)

There is always an easy solution to every human problem—
neat, plausible, and wrong.

— H. L. Mencken, “The Divine Afflatus”,
New York Evening Mail (November 16, 1917)

7 Greedy Algorithms

7.1 Storing Files on Tape

Suppose we have a set of n files that we want to store on a tape. In the future, users will want to
read those files from the tape. Reading a file from tape isn't like reading a file from disk; first
we have to fast-forward past all the other files, and that takes a significant amount of time. Let
L[1..n] be an array listing the lengths of each file; specifically, file i has length L[i]. If the files
are stored in order from 1 to n, then the cost of accessing the kth file is

k
cost(k) = Z L[i].
i=1

The cost reflects the fact that before we read file k we must first scan past all the earlier files on
the tape. If we assume for the moment that each file is equally likely to be accessed, then the
expected cost of searching for a random file is

n

n k .
E[cost] :Z@ :ZZ %

k=1 k=1i=1

If we change the order of the files on the tape, we change the cost of accessing the files; some
files become more expensive to read, but others become cheaper. Different file orders are likely
to result in different expected costs. Specifically, let 7t(i) denote the index of the file stored at
position i on the tape. Then the expected cost of the permutation 7 is

n k .
E[cost(m)] = Z Z @

k=1i=1

Which order should we use if we want the expected cost to be as small as possible? The
answer is intuitively clear; we should store the files in order from shortest to longest. So let’s
prove this.

Lemma 1. E[cost(m)] is minimized when L[7(i)] < L[(i + 1)] for all i.

Proof: Suppose L[7(i)] > L[n(i + 1)] for some i. To simplify notation, let a = (i) and
b = m(i+1). If we swap files a and b, then the cost of accessing a increases by L[b], and the cost

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

of accessing b decreases by L[a]. Overall, the swap changes the expected cost by (L[b]—L[a])/n.
But this change is an improvement, because L[b] < L[a]. Thus, if the files are out of order, we
can improve the expected cost by swapping some mis-ordered adjacent pair. m|

This example gives us our first greedy algorithm. To minimize the total expected cost of
accessing the files, we put the file that is cheapest to access first, and then recursively write
everything else; no backtracking, no dynamic programming, just make the best local choice
and blindly plow ahead. If we use an efficient sorting algorithm, the running time is clearly
O(nlogn), plus the time required to actually write the files. To prove the greedy algorithm is
actually correct, we simply prove that the output of any other algorithm can be improved by
some sort of swap.

Let’s generalize this idea further. Suppose we are also given an array F[1..n] of access
frequencies for each file; file i will be accessed exactly F[i] times over the lifetime of the tape.
Now the total cost of accessing all the files on the tape is

n

k n k
Zcost(rc)=Z(F[n(k)]-ZL[7r(i)]) ZZ Flr(k)]- L{n(D)]).
i=1 =1i=1

k=1

Now what order should store the files if we want to minimize the total cost?

We'’ve already proved that if all the frequencies are equal, then we should sort the files by
increasing size. If the frequencies are all different but the file lengths L[i] are all equal, then
intuitively, we should sort the files by decreasing access frequency, with the most-accessed file
first. In fact, this is not hard to prove by modifying the proof of Lemma 1. But what if the sizes
and the frequencies are both different? In this case, we should sort the files by the ratio L/F.

LIn(D] _ LinGi+1)]
FIn(D] = Fln(i+1)]

Lemma 2. Ycost(7) is minimized when forall i.

Proof: Suppose L[7(i)]/F[n(i)] > L[n(i+ 1)]/F[n(i +i)] for some i. To simplify notation, let
a=mn(i) and b = n(i + 1). If we swap files a and b, then the cost of accessing a increases by
L[b], and the cost of accessing b decreases by L[a]. Overall, the swap changes the total cost by
L[b]F[a]— L[a]F[b]. But this change is an improvement, since

Lla] _ L[b]
Fla] ~ F[b]

— L[b]F[a]— L[a]F[b] <O

Thus, if two adjacent files are out of order, we can improve the total cost by swapping them. 0O

7.2 Scheduling Classes

The next example is slightly less trivial. Suppose you decide to drop out of computer science at the
last minute and change your major to Applied Chaos. The Applied Chaos department offers all of
its classes on the same day every week, called ‘Soberday’ by the students (but interestingly, not
by the faculty). Every class has a different start time and a different ending time: AC 101 (‘Toilet
Paper Landscape Architecture’) starts at 10:27pm and ends at 11:51pm; AC 666 (Tmmanentizing
the Eschaton’) starts at 4:18pm and ends at 7:06pm, and so on. In the interest of graduating as
quickly as possible, you want to register for as many classes as you can. (Applied Chaos classes
don’t require any actual work.) The university’s registration computer won'’t let you register for
overlapping classes, and no one in the department knows how to override this ‘feature’. Which
classes should you take?

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

More formally, suppose you are given two arrays S[1..n] and F[1..n] listing the start and
finish times of each class; to be concrete, we can assume that 0 < S[i] < F[i] £ M for each i, for
some value M (for example, the number of picoseconds in Soberday). Your task is to choose
the largest possible subset X € {1,2,...,n} so that for any pair i, j € X, either S[i] > F[j] or
S[j] > F[i]. We can illustrate the problem by drawing each class as a rectangle whose left
and right x-coordinates show the start and finish times. The goal is to find a largest subset of
rectangles that do not overlap vertically.

A maximal conflict-free schedule for a set of classes.

This problem has a fairly simple recursive solution, based on the observation that either you
take class 1 or you don’t. Let B4 denote the set of classes that end before class 1 starts, and let Lg
denote the set of classes that start later than class 1 ends:

By={i|2<i<nandF[i] <S[1]} Lg={i|2<i<nandS[i]>F[1]}

If class 1 is in the optimal schedule, then so are the optimal schedules for B, and Lg, which we
can find recursively. If not, we can find the optimal schedule for {2,3,...,n} recursively. So
we should try both choices and take whichever one gives the better schedule. Evaluating this
recursive algorithm from the bottom up gives us a dynamic programming algorithm that runs in
0(n?) time. I won’t bother to go through the details, because we can do better.!

Intuitively, we’d like the first class to finish as early as possible, because that leaves us with
the most remaining classes. If this greedy strategy works, it suggests the following very simple
algorithm. Scan through the classes in order of finish time; whenever you encounter a class that
doesn’t conflict with your latest class so far, take it!

| —
11
L T 1
[]
I
[]
| E—
T 1
[
[]
1

The same classes sorted by finish times and the greedy schedule.

We can write the greedy algorithm somewhat more formally as follows. (Hopefully the first
line is understandable.) The algorithm clearly runs in O(nlogn) time.

1But you should still work out the details yourself. The dynamic programming algorithm can be used to find the
“best” schedule for several different definitions of “best”, but the greedy algorithm I'm about to describe only works
when “best” means “biggest”. Also, you need the practice.

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

GREEDYSCHEDULE(S[1..n],F[1..n]):
sort F and permute S to match
count « 1
X[count] <1
fori —2ton

if S[i] > F[X[count]]
count « count +1
X[count] « i
return X[1..count]

To prove that this algorithm actually gives us a maximal conflict-free schedule, we use an
exchange argument, similar to the one we used for tape sorting. We are not claiming that the
greedy schedule is the only maximal schedule; there could be others. (See the figures on the
previous page.) All we can claim is that at least one of the maximal schedules is the one that the
greedy algorithm produces.

Lemma 3. At least one maximal conflict-free schedule includes the class that finishes first.

Proof: Let f be the class that finishes first. Suppose we have a maximal conflict-free schedule X
that does not include f. Let g be the first class in X to finish. Since f finishes before g does, f
cannot conflict with any class in the set S \ {g}. Thus, the schedule X’ =X U {f}\ {g} is also
conflict-free. Since X’ has the same size as X, it is also maximal. O

To finish the proof, we call on our old friend, induction.
Theorem 4. The greedy schedule is an optimal schedule.

Proof: Let f be the class that finishes first, and let L be the subset of classes the start after
f finishes. The previous lemma implies that some optimal schedule contains f, so the best
schedule that contains f is an optimal schedule. The best schedule that includes f must contain
an optimal schedule for the classes that do not conflict with f, that is, an optimal schedule for L.
The greedy algorithm chooses f and then, by the inductive hypothesis, computes an optimal
schedule of classes from L. m|

The proof might be easier to understand if we unroll the induction slightly.

Proof: Let (g1, 85,---,&k) be the sequence of classes chosen by the greedy algorithm. Suppose
we have a maximal conflict-free schedule of the form

<g1) &25--- :gj—lacj)cj-‘rl: e ~:Cm>:

where class c; is different from the class g; that would be chosen by the greedy algorithm. (We
may have j = 1, in which case this schedule starts with a non-greedy choice c;.) By construction,
the jth greedy choice g; does not conflict with any earlier class g3, g5,...,&;j—1, and since our
schedule is conflict-free, neither does c;. Moreover, g; has the earliest finish time among all
classes that don’t conflict with the earlier classes; in particular, g; finishes before c;. This implies
that g; does not conflict with any of the later classes cj,1,...,cp,. Thus, the schedule

(81,825 -'~:gj—1:gjzcj+1;-'-,cm>;

is conflict-free. (This is just a generalization of Lemma 3, which considers the case j = 1.)

By induction, it now follows that there is an optimal schedule (g1, g9, -+, k> Ckt1>+ - +»Cm)
that includes every class chosen by the greedy algorithm. But this is impossible unless k = m; if
there were a class ¢ that does not conflict with g, the greedy algorithm would choose more
than k classes. m|

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

7.3 General Structure

The basic structure of this correctness proof is exactly the same as for the tape-sorting problem:
an inductive exchange argument.

* Assume that there is an optimal solution that is different from the greedy solution.
* Find the “first” difference between the two solutions.

* Argue that we can exchange the optimal choice for the greedy choice without degrading
the solution.

This argument implies by induction that some optimal solution that contains the entire greedy
solution, and therefore equals the greedy solution. Sometimes, as in the scheduling problem, an
additional step is required to show no optimal solution strictly improves the greedy solution.

7.4 Huffman Codes

A binary code assigns a string of os and 1s to each character in the alphabet. A binary code is
prefix-free if no code is a prefix of any other. 7-bit ASCII and Unicode’s UTF-8 are both prefix-free
binary codes. Morse code is a binary code, but it is not prefix-free; for example, the code for S
(- -) includes the code for E (-) as a prefix. Any prefix-free binary code can be visualized as a
binary tree with the encoded characters stored at the leaves. The code word for any symbol is
given by the path from the root to the corresponding leaf; o for left, 1 for right. The length of a
codeword for a symbol is the depth of the corresponding leaf.

Let me emphasize that binary code trees are not binary search trees; we don’t care at all
about the order of symbols at the leaves.

Suppose we want to encode messages in an n-character alphabet so that the encoded message
is as short as possible. Specifically, given an array frequency counts f[1..n], we want to compute
a prefix-free binary code that minimizes the total encoded length of the message:2

> £Lil - depth(i).
i=1

In 1951, as a PhD student at MIT, David Huffman developed the following greedy algorithm to
produce such an optimal code:3

HurFMAN: Merge the two least frequent letters and recurse.

For example, suppose we want to encode the following helpfully self-descriptive sentence,
discovered by Lee Sallows:*

2This looks almost exactly like the cost of a binary search tree, but the optimization problem is very different: code
trees are not required to keep the keys in any particular order.

3Huffman was a student in an information theory class taught by Robert Fano, who was a close colleague of Claude
Shannon, the father of information theory. Fano and Shannon had previously developed a different greedy algorithm
for producing prefix codes—split the frequency array into two subarrays as evenly as possible, and then recursively
build a code for each subarray—but these Fano-Shannon codes were known not to be optimal. Fano posed the (then
open) problem of finding an optimal encoding to his class; Huffman solved the problem as a class project, in lieu of
taking a final exam.

4A. K. Dewdney. Computer recreations. Scientific American, October 1984. Douglas Hofstadter published a few
earlier examples of Lee Sallows’ self-descriptive sentences in his Scientific American column in January 1982.

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f's, three
g’s, eight h’s, thirteen i’s, two I's, sixteen n’s, nine 0’s, six r’s, twenty-seven s’s,
twenty-two t's, two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z.

To keep things simple, let’s forget about the forty-four spaces, nineteen apostrophes, nineteen
commas, three hyphens, and only one period, and just encode the letters. Here’s the frequency
table:

A(C|D|E|F|G|H|[I |L|NJOIR|S | T |U[V|W|X[Y]|Z
313|12(26|5|3[8(13|2(16|9|6(27(22|2|5|8(|4|5]|1

Huffman’s algorithm picks out the two least frequent letters, breaking ties arbitrarily—in this
case, say, Z and D—and merges them together into a single new character [¥ with frequency 3.
This new character becomes an internal node in the code tree we are constructing, with Z and D
as its children; it doesn’t matter which child is which. The algorithm then recursively constructs
a Huffman code for the new frequency table

AJC|E|F|G|H| I |L|NJOIR|S | T |U|V|W|X|Y|K
3{3(26(5(3(8(13[2(16|9|6|27(22|2|5|8|4|5]|3

After 19 merges, all 20 characters have been merged together. The record of merges gives us our
code tree. The algorithm makes a number of arbitrary choices; as a result, there are actually
several different Huffman codes. One such code is shown below. For example, the code for A is
110000, and the code for S is 00.

(1) | @) (1) 12) 13
ORI RHEHEHENOSENO
HEO HRHREHNO
21 |2 21 |1

A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for merged characters

If we use this code, the encoded message starts like this:

T H I SSEN T EN € E C O N T A

Here is the list of costs for encoding each character in the example message, along with that
character’s contribution to the total length of the encoded message:

char. [A i CiDIE{Fi{GiH:IIILINIOIRISITIUIVIWIXiY iz
freq [303 :2:i26:5:3:8:13:2:i16:9 {6 :27:22:2 :5:8:i4:5:1

i6:7:i3i5:6:4:4:7:3:4:4:2:4:7:5:4:6:5:7

total | 18 : 18 : 14 78 125 : 18 32 :52: 14 :48 136 :24 54 :88:14 :25:32:24 257

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

Altogether, the encoded message is 646 bits long. Different Huffman codes would assign different
codes, possibly with different lengths, to various characters, but the overall length of the encoded
message is the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it produces
an optimal prefix-free binary code. Encoding Lee Sallows’ sentence using any prefix-free code
requires at least 646 bits! Fortunately, the recursive structure makes this claim easy to prove
using an exchange argument, similar to our earlier optimality proofs. We start by proving that
the algorithm’s very first choice is correct.

Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: I'll actually prove a stronger statement: There is an optimal code in which x and y are
siblings and have the largest depth of any leaf.

Let T be an optimal code tree, and suppose this tree has depth d. Since T is a full binary
tree, it has at least two leaves at depth d that are siblings. (Verify this by induction!) Suppose
those two leaves are not x and y, but some other characters a and b.

Let T’ be the code tree obtained by swapping x and a. The depth of x increases by some
amount A, and the depth of a decreases by the same amount. Thus,

cost(T") = cost(T) — (f[a] — f[x]A.

By assumption, x is one of the two least frequent characters, but a is not, which implies that
flal = f[x]. Thus, swapping x and a does not increase the total cost of the code. Since T was
an optimal code tree, swapping x and a does not decrease the cost, either. Thus, T’ is also an
optimal code tree (and incidentally, f[a] actually equals f[x]).

Similarly, swapping y and b must give yet another optimal code tree. In this final optimal
code tree, x and y are maximum-depth siblings, as required. |

Now optimality is guaranteed by our dear friend the Recursion Fairy! Essentially we’re relying
on the following recursive definition for a full binary tree: either a single node, or a full binary
tree where some leaf has been replaced by an internal node with two leaf children.

Theorem 6. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial.

Otherwise, let f[1..n] be the original input frequencies, where without loss of generality,
f[1] and f[2] are the two smallest. To keep things simple, let f[n+1]= f[1]+ f[2]. By the
previous lemma, we know that some optimal code for f[1..n] has characters 1 and 2 as siblings.

Let T’ be the Huffman code tree for f[3..n + 1]; the inductive hypothesis implies that T’
is an optimal code tree for the smaller set of frequencies. To obtain the final code tree T, we
replace the leaf labeled n + 1 with an internal node with two children, labelled 1 and 2. I claim
that T is optimal for the original frequency array f[1..n].

To prove this claim, we can express the cost of T in terms of the cost of T’ as follows. (In
these equations, depth(i) denotes the depth of the leaf labelled i in either T or T’; if the leaf

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

appears in both T and T, it has the same depth in both trees.)

cost(T) = Zf[i] - depth(i)
i=1

n+1

= Zf[i] -depth(i)+ f[1]-depth(1) + f[2] - depth(2) — f[n+ 1] - depth(n + 1)
i=3

=cost(T')+ f[1]-depth(1) + f[2] - depth(2) — f[n+ 1] - depth(n+ 1)
=cost(T')+ (f[1] + f[2]) - depth(T) — f[n+ 1] - (depth(T)—1)
=cost(T')+ f[1]+ f[2]

This equation implies that minimizing the cost of T is equivalent to minimizing the cost of T’; in
particular, attaching leaves labeled 1 and 2 to the leaf in T’ labeled n + 1 gives an optimal code
tree for the original frequencies. |

To actually implement Huffman codes efficiently, we keep the characters in a min-heap,
where the priority of each character is its frequency. We can construct the code tree by keeping
three arrays of indices, listing the left and right children and the parent of each node. The root
of the tree is the node with index 2n —1.

BuiLbHUFrFMAN(f[1..n]):
fori—1ton
L[i]«< 0; R[i]<0
InserT(1, f[i])
fori < nto2n—1
Xx «— EXTRACTMIN()
y « ExTrRACTMIN()
flil< flx]+fly]
L[i] < x; Rli] <y
P[x]«<i; Ply]«i
InserT(1, f[i])
P[2n—1]«0

The algorithm performs O(n) min-heap operations. If we use a balanced binary tree as the heap,
each operation requires O(logn) time, so the total running time of BUILDHUFFMAN is O(nlogn).
Finally, here are simple algorithms to encode and decode messages:

HurFMANENCODE(A[1..k]): HurrMANDECODE(B[1..m]):
me1 k<1
fori—1tok ve2n—1

HUFFMANENCODEONE(A[1]) forie—1tom
HUFFMANENCODEONE(x): if B[i]=0
ifx<2n—1 veL[v]
HUFFMANENCODEONE(P[x]) else
if x = L[P[x]] v <RD]
B[m] <0 if L[v]=0
else Alk] <v
B[m]«1 k—k+1
mem+1l ve2n—1

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

Exercises

1. For each of the following alternative greedy algorithms for the class scheduling problem,
either prove that the algorithm always constructs an optimal schedule, or describe a small
input example for which the algorithm does not produce an optimal schedule. Assume
that all algorithms break ties arbitrarily (that is, in a manner that is completely out of your
control).

(a) Choose the course x that ends last, discard classes that conflict with x, and recurse.

(b) Choose the course x that starts first, discard all classes that conflict with x, and
recurse.

(c¢) Choose the course x that starts last, discard all classes that conflict with x, and
recurse.

(d) Choose the course x with shortest duration, discard all classes that conflict with x,
and recurse.

(e) Choose a course x that conflicts with the fewest other courses, discard all classes that
conflict with x, and recurse.

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest
duration and recurse.

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts with
the most other courses and recurse.

(h) Let x be the class with the earliest start time, and let ¥ be the class with the second
earliest start time.

e If x and y are disjoint, choose x and recurse on everything but x.
* If x completely contains y, discard x and recurse.
* Otherwise, discard y and recurse.
(i) If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y, and recurse.

2. Now consider a weighted version of the class scheduling problem, where different classes
offer different number of credit hours (totally unrelated to the duration of the class lectures).
Your goal is now to choose a set of non-conflicting classes that give you the largest possible
number of credit hours, given an array of start times, end times, and credit hours as input.

(a) Prove that the greedy algorithm described in the notes — Choose the class that ends
first and recurse — does not always return an optimal schedule.

(b) Describe an algorithm to compute the optimal schedule in O(n?) time.

3. Let X be a set of n intervals on the real line. A subset of intervals Y C X is called a tiling
path if the intervals in Y cover the intervals in X, that is, any real value that is contained in
some interval in X is also contained in some interval in Y. The size of a tiling cover is just
the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as
possible. Assume that your input consists of two arrays X;[1..n] and Xz[1..n], representing
the left and right endpoints of the intervals in X. If you use a greedy algorithm, you must
prove that it is correct.

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

A set of intervals. The seven shaded intervals form a tiling path.

4. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every
interval in X contains at least one point in P. Describe and analyze an efficient algorithm
to compute the smallest set of points that stabs X. Assume that your input consists of two
arrays X;[1..n] and Xg[1..n], representing the left and right endpoints of the intervals in
X. As usual, If you use a greedy algorithm, you must prove that it is correct.

A set of intervals stabbed by four points (shown here as vertical segments)

5. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to
each interval, so that any two overlapping intervals are assigned different colors. Describe
and analyze an efficient algorithm to compute the minimum number of colors needed
to properly color X. Assume that your input consists of two arrays L[1..n] and R[1..n],
where L[i] and R[i] are the left and right endpoints of the ith interval. As usual, if you use
a greedy algorithm, you must prove that it is correct.

| 1 | | 2 | | 3 | [5 |
| 2 | | 1 | I
| 5 | | 5 | [3]
[4] [4] | 1 |
| 3 | [3] | 2 |

A proper coloring of a set of intervals using five colors.

6. Suppose you are given an array A[1 .. n] of integers, each of which may be positive, negative,
or zero. A contiguous subarray A[i .. j] is called a positive interval if the sum of its entries
is greater than zero. Describe and analyze an algorithm to compute the minimum number
of positive intervals that cover every positive entry in A. For example, given the following
array as input, your algorithm should output the number 3.

sum=2 sum=1 sum=7

A A A

|43 =5 +7 —41+1 -8 4317145 —9 45 -2 +4

7. Suppose you are a simple shopkeeper living in a country with n different types of coins,
with values 1 =c[1] < c[2] < --- < c[n]. (In the U.S., for example, n = 6 and the values

10

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

are 1,5, 10, 25, 50 and 100 cents.) Your beloved and benevolent dictator, El Generalissimo,
has decreed that whenever you give a customer change, you must use the smallest possible
number of coins, so as not to wear out the image of El Generalissimo lovingly engraved on
each coin by servants of the Royal Treasury.

(a) In the United States, there is a simple greedy algorithm that always results in the
smallest number of coins: subtract the largest coin and recursively give change for
the remainder. El Generalissimo does not approve of American capitalist greed. Show
that there is a set of coin values for which the greedy algorithm does not always give
the smallest possible of coins.

(b) Now suppose El Generalissimo decides to impose a currency system where the coin
denominations are consecutive powers b°, b', b2, ..., b* of some integer b > 2. Prove
that despite El Generalissimo’s disapproval, the greedy algorithm described in part
(a) does make optimal change in this currency system.

(c) Describe and analyze an efficient algorithm to determine, given a target amount
A and a sorted array c[1..n] of coin denominations, the smallest number of coins
needed to make A cents in change. Assume that c[1] = 1, so that it is possible to
make change for any amount A.

8. Suppose you have just purchased a new type of hybrid car that uses fuel extremely
efficiently, but can only travel 100 miles on a single battery. The car’s fuel is stored in
a single-use battery, which must be replaced after at most 100 miles. The actual fuel
is virtually free, but the batteries are expensive and can only be installed by licensed
battery-replacement technicians. Thus, even if you decide to replace your battery early,
you must still pay full price for the new battery to be installed. Moreover, because these
batteries are in high demand, no one can afford to own more than one battery at a time.

Suppose you are trying to get from San Francisco to New York City on the new Inter-
Continental Super-Highway, which runs in a direct line between these two cities. There are
several fueling stations along the way; each station charges a different price for installing a
new battery. Before you start your trip, you carefully print the Wikipedia page listing the
locations and prices of every fueling station on the ICSH. Given this information, how do
you decide the best places to stop for fuel?

More formally, suppose you are given two arrays D[1..n] and C[1..n], where D[i] is
the distance from the start of the highway to the ith station, and C[i] is the cost to replace
your battery at the ith station. Assume that your trip starts and ends at fueling stations (so
D[1] =0 and D[n] is the total length of your trip), and that your car starts with an empty
battery (so you must install a new battery at station 1).

(a) Describe and analyze a greedy algorithm to find the minimum number of refueling
stops needed to complete your trip. Don’t forget to prove that your algorithm is
correct.

(b) But what you really want to minimize is the total cost of travel. Show that your greedy
algorithm in part (a) does not produce an optimal solution when extended to this
setting.

(c) Describe an efficient algorithm to compute the locations of the fuel stations you
should stop at to minimize the total cost of travel.

11

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

9.

10.

11.

Recall that a string w of parentheses (and) is balanced if it satisfies one of the following
conditions:

* wis the empty string.
* w = (x) for some balanced string x

* w = xy for some balanced strings x and y

For example, the string

w=((())00)COO) O

is balanced, because w = xy, where

x=((MMOO) ad y=000)().

(a) Describe and analyze an algorithm to determine whether a given string of parentheses
is balanced.

(b) Describe and analyze a greedy algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses. As usual, don’t forget to prove your
algorithm is correct.

For both problems, your input is an array w[1..n], where for each i, either w[i] = (or
w[i] =). Both of your algorithms should run in O(n) time.

Congratulations! You have successfully conquered Camelot, transforming the former
battle-scarred kingdom with an anarcho-syndicalist commune, where citizens take turns
to act as a sort of executive-officer-for-the-week, but with all the decisions of that officer
ratified at a special bi-weekly meeting, by a simple majority in the case of purely internal
affairs, but by a two-thirds majority in the case of more major. . ..

As a final symbolic act, you order the Round Table (surprisingly, an actual circular table)
to be split into pizza-like wedges and distributed to the citizens of Camelot as trophies.
Each citizen has submitted a request for an angular wedge of the table, specified by two
angles—for example: Sir Robin the Brave might request the wedge from 17.23° to 42°,
and Sir Lancelot the Pure might request the 2° wedge from 359° to 1°. Each citizen will
be happy if and only if they receive precisely the wedge that they requested. Unfortunately,
some of these ranges overlap, so satisfying all the citizens’ requests is simply impossible.
Welcome to politics.

Describe and analyze an algorithm to find the maximum number of requests that can
be satisfied. [Hint: Careful! The output of your algorithm must not change if you rotate the
table. Do not assume that angles are integers.]

Suppose you are standing in a field surrounded by several large balloons. You want to use
your brand new Acme Brand Zap-O-Matic™ to pop all the balloons, without moving from
your current location. The Zap-O-Matic™ shoots a high-powered laser beam, which pops
all the balloons it hits. Since each shot requires enough energy to power a small country
for a year, you want to fire as few shots as possible.

The minimum zap problem can be stated more formally as follows. Given a set C of n
circles in the plane, each specified by its radius and the (x, y) coordinates of its center,
compute the minimum number of rays from the origin that intersect every circle in C. Your
goal is to find an efficient algorithm for this problem.

12

Algorithms Lecture 7: Greedy Algorithms [Fa’14]

Nine balloons popped by 4 shots of the Zap-O-Matic™

(a) Suppose it is possible to shoot a ray that does not intersect any balloons. Describe
and analyze a greedy algorithm that solves the minimum zap problem in this special
case. [Hint: See Exercise 2.]

(b) Describe and analyze a greedy algorithm whose output is within 1 of optimal. That is,
if m is the minimum number of rays required to hit every balloon, then your greedy
algorithm must output either m or m+ 1. (Of course, you must prove this fact.)

(c) Describe an algorithm that solves the minimum zap problem in O(nz) time.

*(d) Describe an algorithm that solves the minimum zap problem in O(nlogn) time.

Assume you have a subroutine INTERSECTS(r, ¢) that determines whether an arbitrary
ray r intersects an arbitrary circle ¢ in O(1) time. This subroutine is not difficult to write,
but it’s not the interesting part of the problem.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

13

Algorithms Lecture 8: Matroids [Fa’13]

The problem is that we attempt to solve the simplest questions cleverly,
thereby rendering them unusually complex.
One should seek the simple solution.

— Anton Pavlovich Chekhov (c. 1890)

I love deadlines. | like the whooshing sound they make as they fly by.
— Douglas Adams

*8 Matroids

8.1 Definitions

Many problems that can be correctly solved by greedy algorithms can be described in terms
of an abstract combinatorial object called a matroid. Matroids were first described in 1935 by
the mathematician Hassler Whitney as a combinatorial generalization of linear independence of
vectors—'matroid’ means ‘something sort of like a matrix’.

A matroid M is a finite collection of finite sets that satisfies three axioms:

* Non-emptiness: The empty set is in M. (Thus, M is not itself empty.)
* Heredity: If a set X is an element of M, then every subset of X is also in M.

* Exchange: If X and Y are two sets in M where |X| > |Y|, then there is an element
x € X\ Y such that Y U {x} is in M.

The sets in M are typically called independent sets; for example, we would say that any subset
of an independent set is independent. The union of all sets in M is called the ground set. An
independent set is called a basis if it is not a proper subset of another independent set. The
exchange property implies that every basis of a matroid has the same cardinality. The rank of a
subset X of the ground set is the size of the largest independent subset of X. A subset of the
ground set that is not in M is called dependent (surprise, surprise). Finally, a dependent set is
called a circuit if every proper subset is independent.
Most of this terminology is justified by Whitney’s original example:

* Linear matroid: Let A be any n x m matrix. A subset I C {1,2,...,n} is independent if
and only if the corresponding subset of columns of A is linearly independent.

The heredity property follows directly from the definition of linear independence; the exchange
property is implied by an easy dimensionality argument. A basis in any linear matroid is also a
basis (in the linear-algebra sense) of the vector space spanned by the columns of A. Similarly, the
rank of a set of indices is precisely the rank (in the linear-algebra sense) of the corresponding set
of column vectors.

Here are several other examples of matroids; some of these we will see again later. I will
leave the proofs that these are actually matroids as exercises for the reader.

* Uniform matroid Uy ,: A subset X C {1,2,...,n} is independent if and only if |X| < k.
Any subset of {1,2,...,n} of size k is a basis; any subset of size k + 1 is a circuit.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

Algorithms Lecture 8: Matroids [Fa’13]

* Graphic/cycle matroid M(G): Let G = (V, E) be an arbitrary undirected graph. A subset
of E is independent if it defines an acyclic subgraph of G. A basis in the graphic matroid is
a spanning tree of G; a circuit in this matroid is a cycle in G.

* Cographic/cocycle matroid M*(G): Let G = (V, E) be an arbitrary undirected graph. A
subset I C E is independent if the complementary subgraph (V, E \ I) of G is connected. A
basis in this matroid is the complement of a spanning tree; a circuit in this matroid is a
cocycle—a minimal set of edges that disconnects the graph.

* Matching matroid: Let G = (V,E) be an arbitrary undirected graph. A subset I C V is
independent if there is a matching in G that covers I.

* Disjoint path matroid: Let G = (V, E) be an arbitrary directed graph, and let s be a fixed
vertex of G. A subset I C V is independent if and only if there are edge-disjoint paths from
s to each vertex in I.

Now suppose each element of the ground set of a matroid M is given an arbitrary non-negative
weight. The matroid optimization problem is to compute a basis with maximum total weight.
For example, if M is the cycle matroid for a graph G, the matroid optimization problem asks us to
find the maximum spanning tree of G. Similarly, if M is the cocycle matroid for G, the matroid
optimization problem seeks (the complement of) the minimum spanning tree.

The following natural greedy strategy computes a basis for any weighted matroid:

GREEDYBAs1s(M, w):

X[1..n] <M ((the ground set))
sort X in decreasing order of weight w
G—g
forie—1ton

ifGU{X[i]l}eM

add X[i]to G

return G

Suppose we can test in F(n) whether a given subset of the ground set is independent. Then this
algorithm runs in O(nlogn + n - F(n)) time.

Theorem 1. For any matroid M and any weight function w, GREEDYBasis(M, w) returns a maximum-
weight basis of M.

Proof: We use a standard exchange argument. Let G = {g, g5, - .., &k} be the independent set
returned by GREEDYBaAsis(M, w). If any other element could be added to G to obtain a larger
independent set, the greedy algorithm would have added it. Thus, G is a basis.

For purposes of deriving a contradiction, suppose there is an independent set H = {hy, h,,...,h;}

such that) .
D wlg) < > wihy).
i=1 j=1

Without loss of generality, we assume that H is a basis. The exchange property now implies that
k=1{.

Now suppose the elements of G and H are indexed in order of decreasing weight. Let i be
the smallest index such that w(g;) < w(h;), and consider the independent sets

Gi-1 =1{81,82,---,8&-1} and H;={hy,hy,...,h;_1,h;}.

Algorithms Lecture 8: Matroids [Fa’13]

By the exchange property, there is some element h; € H; such that G;_; U {h;} is an independent
set. We have w(h;) > w(h;) > w(g;). Thus, the greedy algorithm considers and rejects the
heavier element h; before it considers the lighter element g;. But this is impossible—the greedy
algorithm accepts elements in decreasing order of weight. |

We now immediately have a correct greedy optimization algorithm for any matroid. Returning
to our examples:

* Linear matroid: Given a matrix A, compute a subset of vectors of maximum total weight
that span the column space of A.

* Uniform matroid: Given a set of weighted objects, compute its k largest elements.

* Cycle matroid: Given a graph with weighted edges, compute its maximum spanning tree.
In this setting, the greedy algorithm is better known as Kruskal’s algorithm.

* Cocycle matroid: Given a graph with weighted edges, compute its minimum spanning tree.
* Matching matroid: Given a graph, determine whether it has a perfect matching.

* Disjoint path matroid: Given a directed graph with a special vertex s, find the largest set of
edge-disjoint paths from s to other vertices.

The exchange condition for matroids turns out to be crucial for the success of this algorithm.
A subset system is a finite collection § of finite sets that satisfies the heredity condition—If X € §
and Y C X, then Y € 8—but not necessarily the exchange condition.

Theorem 2. For any subset system & that is not a matroid, there is a weight function w such that
GREEDYBASsIS(S, w) does not return a maximum-weight set in S.

Proof: Let X and Y be two sets in § that violate the exchange property—I|X| > |Y|, but for any
element x € X \ Y, the set Y U {x} is not in 8. Let m = |Y|. We define a weight function as
follows:

* Every element of Y has weight m + 2.
* Every element of X \ Y has weight m + 1.

* Every other element of the ground set has weight zero.

With these weights, the greedy algorithm will consider and accept every element of Y, then
consider and reject every element of X, and finally consider all the other elements. The algorithm
returns a set with total weight m(m + 2) = m? + 2m. But the total weight of X is at least
(m+1)? = m? + 2m + 1. Thus, the output of the greedy algorithm is not the maximum-weight
set in 8. m|

Recall the Applied Chaos scheduling problem considered in the previous lecture note. There
is a natural subset system associated with this problem: A set of classes is independent if and only
if not two classes overlap. (This is just the graph-theory notion of ‘independent set’!) This subset
system is not a matroid, because there can be maximal independent sets of different sizes, which
violates the exchange property. If we consider a weighted version of the class scheduling problem,
say where each class is worth a different number of hours, Theorem 2 implies that the greedy
algorithm will not always find the optimal schedule. (In fact, there’s an easy counterexample
with only two classes!) However, Theorem 2 does not contradict the correctness of the greedy
algorithm for the original unweighted problem, however; that problem uses a particularly lucky
choice of weights (all equal).

Algorithms Lecture 8: Matroids [Fa’13]

8.2 Scheduling with Deadlines

Suppose you have n tasks to complete in n days; each task requires your attention for a full
day. Each task comes with a deadline, the last day by which the job should be completed, and a
penalty that you must pay if you do not complete each task by its assigned deadline. What order
should you perform your tasks in to minimize the total penalty you must pay?

More formally, you are given an array D[1..n] of deadlines an array P[1..n] of penalties.
Each deadline D[i] is an integer between 1 and n, and each penalty P[i] is a non-negative real
number. A schedule is a permutation of the integers {1,2,...,n}. The scheduling problem asks
you to find a schedule 7 that minimizes the following cost:

cost(m) 1= ZP[i] [=(i) > D[i]].
i=1

This doesn’t look anything like a matroid optimization problem. For one thing, matroid
optimization problems ask us to find an optimal set; this problem asks us to find an optimal
permutation. Surprisingly, however, this scheduling problem is actually a matroid optimization
in disguise! For any schedule 7, call tasks i such that 7(i) > D[i] late, and all other tasks on
time. The following trivial observation is the key to revealing the underlying matroid structure.

The cost of a schedule is determined by the subset of tasks that are on time.

Call a subset X of the tasks realistic if there is a schedule 7 in which every task in X is on
time. We can precisely characterize the realistic subsets as follows. Let X(t) denote the subset of
tasks in X whose deadline is on or before t:

X(t):={ieX|D[i] < t}.
In particular, X(0) = @ and X(n) = X.

Lemma 3. Let X C {1,2,...,n} be an arbitrary subset of the n tasks. X is realistic if and only if
|X(t)| < t for every integer t.

Proof: Let 7t be a schedule in which every task in X is on time. Let i, be the tth task in X to be
completed. On the one hand, we have 7t(i,) > t, since otherwise, we could not have completed
t — 1 other jobs in X before i,. On the other hand, 7(i,) < D[i], because i, is on time. We
conclude that D[i,] > t, which immediately implies that |X(t)| < t.

Now suppose |X(t)| < t for every integer t. If we perform the tasks in X in increasing order
of deadline, then we complete all tasks in X with deadlines t or less by day t. In particular, for
any i € X, we perform task i on or before its deadline D[i]. Thus, X is realistic. O

We can define a canonical schedule for any set X as follows: execute the tasks in X in increasing
deadline order, and then execute the remaining tasks in any order. The previous proof implies
that a set X is realistic if and only if every task in X is on time in the canonical schedule for X.
Thus, our scheduling problem can be rephrased as follows:

Find a realistic subset X such that)., P[i] is maximized.

So we're looking for optimal subsets after all.

Algorithms Lecture 8: Matroids [Fa’13]

Lemma 4. The collection of realistic sets of jobs forms a matroid.

Proof: The empty set is vacuously realistic, and any subset of a realistic set is clearly realistic.
Thus, to prove the lemma, it suffices to show that the exchange property holds. Let X and Y be
realistic sets of jobs with |X| > |Y].

Let t* be the largest integer such that [X(t*)| < |Y(t*)|. This integer must exist, because
|X(0)] =0<0=1Y(0)| and |X(n)| = |X| > |Y| = |Y(n)|. By definition of t*, there are more
tasks with deadline t*+ 1 in X than in Y. Thus, we can choose a task j in X \ Y with deadline
t*+1;let Z=Y U {j}.

Let t be an arbitrary integer. If t < t*, then |Z(t)| = |Y(¢t)| < t, because Y is realistic. On
the other hand, if t > t*, then |Z(t)| = |Y(t)| + 1 < [X(t)| < t by definition of t* and because X
is realistic. The previous lemma now implies that Z is realistic. This completes the proof of the
exchange property. O

This lemma implies that our scheduling problem is a matroid optimization problem, so the
greedy algorithm finds the optimal schedule.

GREEDYSCHEDULE(D[1..n],P[1..n]):

Sort P in increasing order, and permute D to match
je<0
forie—1ton

X[j+1]«i

if X[1..j+ 1] is realistic

jej+1

return the canonical schedule for X[1..]

To turn this outline into a real algorithm, we need a procedure to test whether a given subset
of jobs is realistic. Lemma ¢ immediately suggests the following strategy to answer this question
in O(n) time.

REALISTIC?(X[1..m],D[1..n]):
{(X is sorted by increasing deadline: i < j = D[X[i]] < D[X[j]])
N <0
j<0
fort<—1ton

if D[X[j]]=¢
Ne—N+1; jej+1
{(Now N = |X(t)I))
ifN>t
return FALSE
return TRUE

If we use this subroutine, GREEDYSCHEDULE runs in O(n?) time. By using some appropriate data
structures, the running time can be reduced to O(nlogn); details are left as an exercise for the
reader.

Exercises

1. Prove that for any graph G, the ‘graphic matroid’ M(G) is in fact a matroid. (This problem
is really asking you to prove that Kruskal’s algorithm is correct!)

Algorithms Lecture 8: Matroids [Fa’13]

2. Prove that for any graph G, the ‘cographic matroid’ M*(G) is in fact a matroid.

3. Prove that for any graph G, the ‘matching matroid’ of G is in fact a matroid. [Hint: What
is the symmetric difference of two matchings?]

4. Prove that for any directed graph G and any vertex s of G, the resulting ‘disjoint path
matroid’ of G is in fact a matroid. [Hint: This question is much easier if you're already
familiar with maximum flows.]

5. Let G be an undirected graph. A set of cycles {cy,c,,...,c,} in G is called redundant if
every edge in G appears in an even number of ¢;’s. A set of cycles is independent if it
contains no redundant subset. A maximal independent set of cycles is called a cycle basis
for G.

(a) Let C be any cycle basis for G. Prove that for any cycle y in G, there is a subset AC C
such that AN {y} is redundant. In other words, y is the ‘exclusive or’ of the cycles in A.

(b) Prove that the set of independent cycle sets form a matroid.

*(c) Now suppose each edge of G has a weight. Define the weight of a cycle to be the total
weight of its edges, and the weight of a set of cycles to be the total weight of all cycles
in the set. (Thus, each edge is counted once for every cycle in which it appears.)
Describe and analyze an efficient algorithm to compute the minimum-weight cycle
basis in G.

6. Describe a modification of GREEDYSCHEDULE that runs in O(nlogn) time. [Hint: Store X
in an appropriate data structure that supports the operations “Is X U{i} realistic?” and ‘Add i
to X” in O(logn) time each.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

6

Randomization

N

= || A

0

z

0

NI[™MI]A
=|lA

RA[TIA[IA]]N

2| I™M|| A

Y

0

=’

0

Y

0

N

TIHHMIIN]Z

D

M NTTT [&

All=[| N

ANl 21T N

D

M| N[&

A

2l T(INIA

A

A

Algorithms Lecture 9: Randomized Algorithms [Sp’15]

The first nuts and bolts appeared in the middle 1400’s. The bolts were just screws with straight
sides and a blunt end. The nuts were hand-made, and very crude. When a match was found
between a nut and a bolt, they were kept together until they were finally assembled.

In the Industrial Revolution, it soon became obvious that threaded fasteners made it easier
to assemble products, and they also meant more reliable products. But the next big step came
in 1801, with Eli Whitney, the inventor of the cotton gin. The lathe had been recently improved.
Batches of bolts could now be cut on different lathes, and they would all fit the same nut.

Whitney set up a demonstration for President Adams, and Vice-President Jefferson. He had
piles of musket parts on a table. There were 10 similar parts in each pile. He went from pile to
pile, picking up a part at random. Using these completely random parts, he quickly put together a
working musket.

— Karl S. Kruszelnicki (“Dr. Karl"), Karl Trek, December 1997

Dr [John von] Neumann in his Theory of Games and Economic Behavior introduces the cut-up
method of random action into game and military strategy: Assume that the worst has happened
and act accordingly. If your strategy is at some point determined. . . by random factor your opponent
will gain no advantage from knowing your strategy since he cannot predict the move. The cut-up
method could be used to advantage in processing scientific data. How many discoveries have
been made by accident? We cannot produce accidents to order.

— William S. Burroughs, "The Cut-Up Method of Brion Gysin"
in The Third Mind by William S. Burroughs and Brion Gysin (1978)

9 Randomized Algorithms

9.1 Nuts and Bolts

Suppose we are given n nuts and n bolts of different sizes. Each nut matches exactly one bolt
and vice versa. The nuts and bolts are all almost exactly the same size, so we can't tell if one bolt
is bigger than the other, or if one nut is bigger than the other. If we try to match a nut witch a
bolt, however, the nut will be either too big, too small, or just right for the bolt.

Our task is to match each nut to its corresponding bolt. But before we do this, let’s try to
solve some simpler problems, just to get a feel for what we can and can’t do.

Suppose we want to find the nut that matches a particular bolt. The obvious algorithm —
test every nut until we find a match — requires exactly n — 1 tests in the worst case. We might
have to check every bolt except one; if we get down the the last bolt without finding a match, we
know that the last nut is the one we’re looking for.!

Intuitively, in the ‘average’ case, this algorithm will look at approximately n/2 nuts. But what
exactly does ‘average case’ mean?

9.2 Deterministic vs. Randomized Algorithms

Normally, when we talk about the running time of an algorithm, we mean the worst-case running
time. This is the maximum, over all problems of a certain size, of the running time of that
algorithm on that input:

Tiorst-case(11) = lg?ﬁ% T(X).

On extremely rare occasions, we will also be interested in the best-case running time:

Tbest—case(n) = min T(X).
|X|=n

“Whenever you lose something, it’s always in the last place you look. So why not just look there first?”

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

Algorithms Lecture 9: Randomized Algorithms [Sp’15]

The average-case running time is best defined by the expected value, over all inputs X of a certain
size, of the algorithm’s running time for X:2

Taverage-case(n) = |X]|E:n[T(X)] = l);::n T(x)-Pr[X].

The problem with this definition is that we rarely, if ever, know what the probability of getting
any particular input X is. We could compute average-case running times by assuming a particular
probability distribution—for example, every possible input is equally likely—but this assumption
doesn’t describe reality very well. Most real-life data is decidedly non-random (or at least random
in some unpredictable way).

Instead of considering this rather questionable notion of average case running time, we
will make a distinction between two kinds of algorithms: deterministic and randomized. A
deterministic algorithm is one that always behaves the same way given the same input; the input
completely determines the sequence of computations performed by the algorithm. Randomized
algorithms, on the other hand, base their behavior not only on the input but also on several
random choices. The same randomized algorithm, given the same input multiple times, may
perform different computations in each invocation.

This means, among other things, that the running time of a randomized algorithm on a given
input is no longer fixed, but is itself a random variable. When we analyze randomized algorithms,
we are typically interested in the worst-case expected running time. That is, we look at the average
running time for each input, and then choose the maximum over all inputs of a certain size:

Tworst-case expected(n) = II)?Ii)r(l E[T(X)].

It’s important to note here that we are making no assumptions about the probability distribution
of possible inputs. All the randomness is inside the algorithm, where we can control it!

9.3 Back to Nuts and Bolts

Let’s go back to the problem of finding the nut that matches a given bolt. Suppose we use the
same algorithm as before, but at each step we choose a nut uniformly at random from the untested
nuts. ‘Uniformly’ is a technical term meaning that each nut has exactly the same probability of
being chosen.? So if there are k nuts left to test, each one will be chosen with probability 1/k.
Now what’s the expected number of comparisons we have to perform? Intuitively, it should be
about n/2, but let’s formalize our intuition.

Let T(n) denote the number of comparisons our algorithm uses to find a match for a single
bolt out of n nuts.# We still have some simple base cases T(1) =0 and T(2) = 1, but when n > 2,
T(n) is a random variable. T(n) is always between 1 and n — 1; it’s actual value depends on our
algorithm’s random choices. We are interested in the expected value or expectation of T (n), which

is defined as follows: .

E[T(n)]=) k-Pr[T(n)=k]
k=1

2The notation E[] for expectation has nothing to do with the shift operator E used in the annihilator method for
solving recurrences!

3This is what most people think ‘random’ means, but they’re wrong.

4Note that for this algorithm, the input is completely specified by the number n. Since we’re choosing the nuts to
test at random, even the order in which the nuts and bolts are presented doesn’t matter. That’s why I'm using the
simpler notation T(n) instead of T (X).

Algorithms Lecture 9: Randomized Algorithms [Sp’15]

If the target nut is the kth nut tested, our algorithm performs min{k,n — 1} comparisons. In
particular, if the target nut is the last nut chosen, we don’t actually test it. Because we choose the
next nut to test uniformly at random, the target nut is equally likely—with probability exactly
1/n—to be the first, second, third, or kth bolt tested, for any k. Thus:

1/n ifk<n—1,

PrT(n) =k]= {2/n ifk=n—1

Plugging this into the definition of expectation gives us our answer.

[\

n—

k 2(n—1
E[T(n)] = _+M
~in n
Ik on—1
= —+
“in n
—1 1
:n(n)+1__
2n n
_n+1_1
2 n

We can get exactly the same answer by thinking of this algorithm recursively. We always
have to perform at least one test. With probability 1/n, we successfully find the matching nut
and halt. With the remaining probability 1 — 1/n, we recursively solve the same problem but
with one fewer nut. We get the following recurrence for the expected number of tests:

n—1

T(1)=0, E[T(n)]=1+ E[T(n—1)]

To get the solution, we define a new function t(n) = nE[T(n)] and rewrite:
t(1)=0, t(n)=n+t(n—1)

This recurrence translates into a simple summation, which we can easily solve.

t(n)szz@—l
k=2

ttn) n+1 1

— E[T(n)]= -

9.4 Finding All Matches

Not let’s go back to the problem introduced at the beginning of the lecture: finding the matching
nut for every bolt. The simplest algorithm simply compares every nut with every bolt, for a total
of n? comparisons. The next thing we might try is repeatedly finding an arbitrary matched pair,
using our very first nuts and bolts algorithm. This requires

n 2
Si-1y="""
i=1 2

comparisons in the worst case. So we save roughly a factor of two over the really stupid algorithm.
Not very exciting.

Algorithms Lecture 9: Randomized Algorithms [Sp’15]

Here’s another possibility. Choose a pivot bolt, and test it against every nut. Then test the
matching pivot nut against every other bolt. After these 2n — 1 tests, we have one matched pair,
and the remaining nuts and bolts are partitioned into two subsets: those smaller than the pivot
pair and those larger than the pivot pair. Finally, recursively match up the two subsets. The
worst-case number of tests made by this algorithm is given by the recurrence

T(n)=2n—1+1111ka<x{T(k—1)+T(n—k)}
=2n—1+T(n—1)

Along with the trivial base case T(0) = 0, this recurrence solves to
n
T(n)= Y (2n—1)=n
i=1

In the worst case, this algorithm tests every nut-bolt pair! We could have been a little more
clever—for example, if the pivot bolt is the smallest bolt, we only need n — 1 tests to partition
everything, not 2n — 1—but cleverness doesn’t actually help that much. We still end up with
about n?/2 tests in the worst case.

However, since this recursive algorithm looks almost exactly like quicksort, and everybody
‘knows’ that the ‘average-case’ running time of quicksort is ©(nlogn), it seems reasonable to
guess that the average number of nut-bolt comparisons is also ©(nlogn). As we shall see shortly,
if the pivot bolt is always chosen uniformly at random, this intuition is exactly right.

9.5 Reductions to and from Sorting

The second algorithm for mathing up the nuts and bolts looks exactly like quicksort. The
algorithm not only matches up the nuts and bolts, but also sorts them by size.

In fact, the problems of sorting and matching nuts and bolts are equivalent, in the following
sense. If the bolts were sorted, we could match the nuts and bolts in O(nlog n) time by performing
a binary search with each nut. Thus, if we had an algorithm to sort the bolts in O(nlogn) time,
we would immediately have an algorithm to match the nuts and bolts, starting from scratch, in
O(nlogn) time. This process of assuming a solution to one problem and using it to solve another
is called reduction—we can reduce the matching problem to the sorting problem in O(nlogn)
time.

There is a reduction in the other direction, too. If the nuts and bolts were matched, we could
sort them in O(nlogn) time using, for example, merge sort. Thus, if we have an O(nlogn) time
algorithm for either sorting or matching nuts and bolts, we automatically have an O(nlogn) time
algorithm for the other problem.

Unfortunately, since we aren’t allowed to directly compare two bolts or two nuts, we can’t
use heapsort or mergesort to sort the nuts and bolts in O(nlogn) worst case time. In fact, the
problem of sorting nuts and bolts deterministically in O(nlogn) time was only ‘solved’ in 19955,
but both the algorithms and their analysis are incredibly te