
D cience
oers upporters
ata S

PMF Machine Learning
Introduction to Deep Learning

dr. sc. Tomislav Lipić
Rudjer Boskovic Institute
Laboratory for Machine Learning and Knowledge Representation

History of Artificial Intelligence (AI)

Artificial Intelligence (AI) Hypes	
=> We are now in ‘Deep Learning (DL) Hype’

Recommended readings:	
• LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 521.7553 (2015): 436.	
• J. Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, Volume 61, January 2015, Pages 85-117

(DOI: 10.1016/j.neunet.2014.09.003	
• detailed preprint: https://arxiv.org/abs/1404.7828 (88 pages, 888 references)

‘Heroes	of	Deep	Learning‘:

Ian	Goodfellow,	Andrej	Karpathy,	to	name	a	few…

“Deep Learning
Conspiracy”	

(aka Canadian Mafia)

(http://cs231n.github.io/)

https://arxiv.org/abs/1404.7828
http://cs231n.github.io/
http://cs231n.github.io/
http://cs231n.github.io/

Source: http://introtodeeplearning.com/

What is Deep Learning (DL)?

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

What is Deep Learning?

ARTIFICIAL

INTELLIGENCE
MACHINE LEARNING

DEEP LEARNINGAny technique that enables
computers to mimic

human behavior
Ability to learn without

explicitly being programmed Extract patterns from data using
neural networks

Data Science (DS)
vs

Machine Learning(ML)
vs

Deep Learning (DL)

Data Science Process

Predictive data analysis uses a subset of measurements (the features) to
predict another measurement (the outcome) on a single person or unit.

Jeffery T. Leek and Roger D. Peng,

Machine Learning
Basic idea: in many domains, it is difficult to hand-build a predictive model, but easy to collect lots of
data; machine learning provides a way to automatically infer the predictive model from dataMachine learning

This has been an example of a machine learning algorithm

Basic idea: in many domains, it is difficult to hand-build a predictive
model, but easy to collect lots of data; machine learning provides a way
to automatically infer the predictive model from data

The basic process (supervised learning):

23

Training Data Machine learning
algorithm Predictions

0 1
, 1 1

0 2
, 1 2

0 3
, 1 3

⋮

Hypothesis function

1 (≈ ℎ 0 (
New example 0	

1 ̂ = ℎ(0)

50 60 70 80 90 100

High Temperature (F)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

P
ea

k
D

em
an

d
(G

W
)

Observed days

Squared loss fit

Fitted line in “original” coordinates

18

A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?

Difficult to build an “a priori” model from first principles to answer this
question

But, relatively easy to record past days of consumption, plus additional
features that affect consumption (i.e., weather)

4

Date High Temperature (F) Peak Demand (GW)
2011-06-01 84.0 2.651

2011-06-02 73.0 2.081

2011-06-03 75.2 1.844

2011-06-04 84.9 1.959

… … …

The basic process [supervised learning]: Terminology

Input features: 0 (∈ ℝ;
, < = 1,… , =

E. g. : 0 (
=

High_Temperature
(

Is_Weekday
(

1

Outputs: 1 (∈ >, < = 1,… , =
E. g. : 1 (∈ ℝ = Peak_Demand

(

Model parameters: " ∈ ℝ;

Hypothesis function: ℎ?: ℝ; → >, predicts output given input

E. g. : ℎ? 0 = ∑ "A

;

A=1
⋅ 0A

24

Terminology

Loss function: ℓ: >×> → ℝ+, measures the difference between a
prediction and an actual output

E. g. : ℓ 1,̂ 1 = 1 ̂ − 1 2

The canonical machine learning optimization problem:

minimize
?

 ∑ ℓ ℎ? 0 (, 1 (
D

(=1

Virtually every machine learning algorithm has this form, just specify
1. What is the hypothesis function?
2. What is the loss function?
3. How do we solve the optimization problem?

25

Terminology

Input features: 0 (∈ ℝ;
, < = 1,… , =

E. g. : 0 (
=

High_Temperature
(

Is_Weekday
(

1

Outputs: 1 (∈ >, < = 1,… , =
E. g. : 1 (∈ ℝ = Peak_Demand

(

Model parameters: " ∈ ℝ;

Hypothesis function: ℎ?: ℝ; → >, predicts output given input

E. g. : ℎ? 0 = ∑ "A

;

A=1
⋅ 0A

24

We really care about is how well our function
(model) will generalize to new examples

Cartoon version of overfitting

18

As model becomes more complex, training loss always decreases;
generalization loss decreases to a point, then starts to increase

Loss

Model Complexity

Training
Generalization

Machine Learning

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
Hastie, T., Tibhshirani, R. and M. Wainwright, (2015), Statistical Learning with Sparsity: The Lasso and Generalizations, Chapman and Hall.
Hastie, T., R. Tibshirani, and J. Friedman, (2011), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Springer.

http://scott.fortmann-roe.com/docs/BiasVariance.html

model1 model2

The canonical machine learning problem is that we don’t really care about minimizing this objective on the
given data set (training data), we really care about how our learned model will generalize to new (unseen)
examples.

As model becomes more complex, training loss always decreases;
generalization loss decreases to a point, then starts to increase.

Total Error = Bias2 + Variance + Irriducible Error

Error due to Variance: The error due to variance is taken as the
variability of a model prediction for a given data point

Error due to Bias: The error due to bias is taken as the difference
between the expected (or average) prediction of our model and the
correct value which we are trying to predict.

Bias vs Variance Tradeoff:

Lo
w

 B
ia

s
H

ig
h

B
ia

s

Low Variance High Variance

model3

model1 model2 model3

x x x

y y y

Underfitted Good Fit/Robust Overfitted
High Bias
Low Variance

Low Bias
High Variance

Bias Variance
Tradeoff

Good Generalization - Low Prediction Error on New Data:

Model: y ⇡ f̂(x)y ⇡ f̂(x)

http://www-bcf.usc.edu/~gareth/ISL/
http://scott.fortmann-roe.com/docs/BiasVariance.html

Machine Learning (ML) Overview: Examples of Tasks

No	labels,	No	feedback	
‘Find	hidden	structure’

Decision	process	
Reword	system	
Learn	series	of	actions	(policy)

Labeled	data 
Direct	feedback		
Predict	outcome/
future	

Labeled	data	
+	

Unlabeled	
data

Recommended readings for refreshing ML:	
• Notes	from	CS229:	http://cs229.stanford.edu/syllabus.html	
• Cheat-sheets	for	CS229:	https://github.com/afshinea/stanford-cs-229-machine-learning

Machine Learning (ML) Overview: Examples of Tasks
- can we do all these tasks with same learning algorithm (hint: NN?)

http://cs229.stanford.edu/syllabus.html
http://cs229.stanford.edu/syllabus.html
https://github.com/afshinea/stanford-cs-229-machine-learning
https://github.com/afshinea/stanford-cs-229-machine-learning

Machine Learning (ML) Overview: Examples of Tasks
MINST data: PCA and t-SNE 2d

CS 229 – Machine Learning https://stanford.edu/~shervine

VIP Cheatsheet: Unsupervised Learning

Afshine Amidi and Shervine Amidi

September 9, 2018

Introduction to Unsupervised Learning

r Motivation – The goal of unsupervised learning is to find hidden patterns in unlabeled data

{x(1),...,x(m)}.

r Jensen’s inequality – Let f be a convex function and X a random variable. We have the

following inequality:

E[f(X)] > f(E[X])

Expectation-Maximization

r Latent variables – Latent variables are hidden/unobserved variables that make estimation

problems di�cult, and are often denoted z. Here are the most common settings where there are

latent variables:

Setting Latent variable z x|z Comments

Mixture of k Gaussians Multinomial(„) N (µj ,�j) µj œ Rn, „ œ Rk

Factor analysis N (0,I) N (µ + �z,Â) µj œ Rn

r Algorithm – The Expectation-Maximization (EM) algorithm gives an e�cient method at

estimating the parameter ◊ through maximum likelihood estimation by repeatedly constructing

a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• E-step: Evaluate the posterior probability Qi(z(i)
) that each data point x(i)

came from

a particular cluster z(i)
as follows:

Qi(z
(i)

) = P (z(i)|x(i)
; ◊)

• M-step: Use the posterior probabilities Qi(z(i)
) as cluster specific weights on data points

x(i)
to separately re-estimate each cluster model as follows:

◊i = argmax

◊

ÿ

i

ˆ
z(i)

Qi(z
(i)

) log

3
P (x(i),z(i)

; ◊)

Qi(z(i))

4
dz(i)

k-means clustering

We note c(i)
the cluster of data point i and µj the center of cluster j.

r Algorithm – After randomly initializing the cluster centroids µ1,µ2,...,µk œ Rn
, the k-means

algorithm repeats the following step until convergence:

c(i)
= arg min

j
||x(i) ≠ µj ||2 and µj =

mÿ

i=1

1{c(i)=j}x(i)

mÿ

i=1

1{c(i)=j}

r Distortion function – In order to see if the algorithm converges, we look at the distortion

function defined as follows:

J(c,µ) =

mÿ

i=1

||x(i) ≠ µc(i) ||2

Hierarchical clustering

r Algorithm – It is a clustering algorithm with an agglomerative hierarchical approach that

build nested clusters in a successive manner.

r Types – There are di�erent sorts of hierarchical clustering algorithms that aims at optimizing

di�erent objective functions, which is summed up in the table below:

Stanford University 1 Fall 2018

k-means algorithm

https://projector.tensorflow.org/

Look 4 SoA:
UMAP

‘Live’ Examples:

https://developers.google.com/machine-learning/clustering/clustering-algorithms

https://github.com/
brain-research/
realistic-ssl-
evaluation

http://www.cs.cmu.edu/~10701/slides/17_SSL.pdf

https://projector.tensorflow.org/
https://pair-code.github.io/understanding-umap/
https://developers.google.com/machine-learning/clustering/clustering-algorithms
https://github.com/brain-research/realistic-ssl-evaluation
https://github.com/brain-research/realistic-ssl-evaluation
https://github.com/brain-research/realistic-ssl-evaluation
https://github.com/brain-research/realistic-ssl-evaluation
http://www.cs.cmu.edu/~10701/slides/17_SSL.pdf

DataCamp	SciKit	Learn	Cheetsheet:	
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Machine Learning (ML) Overview: Algorithms

https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Recommended readings:	
• Domingos, Pedro M. "A few useful things to know about machine learning." Commun. acm 55.10 (2012): 78-87.

• https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf	
• Bennett,	Kristin	P.,	and	Emilio	Parrado-Hernández.	"The	interplay	of	optimization	and	machine	learning	research."	Journal	of	Machine	Learning	

Research	7.Jul	(2006):	1265-1281	
• http://www.jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf	

Machine Learning (ML) Overview: Algorithm components
=> (1) Model representation, (2) Evaluation and (3) Optimization

Table 1: The three components of learning algorithms.

Representation Evaluation Optimization
Instances Accuracy/Error rate Combinatorial optimization

K-nearest neighbor Precision and recall Greedy search
Support vector machines Squared error Beam search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability Continuous optimization
Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent
Sets of rules Cost/Utility Conjugate gradient

Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming
Graphical models Quadratic programming

Bayesian networks
Conditional random fields

with one branch for each feature value, and have class predic-
tions at the leaves. Algorithm 1 shows a bare-bones decision
tree learner for Boolean domains, using information gain and
greedy search [21]. InfoGain(xj ,y) is the mutual information
between feature xj and the class y. MakeNode(x,c0,c1) re-
turns a node that tests feature x and has c0 as the child for
x = 0 and c1 as the child for x = 1.

Of course, not all combinations of one component from each
column of Table 1 make equal sense. For example, dis-
crete representations naturally go with combinatorial op-
timization, and continuous ones with continuous optimiza-
tion. Nevertheless, many learners have both discrete and
continuous components, and in fact the day may not be
far when every single possible combination has appeared in
some learner!

Most textbooks are organized by representation, and it’s
easy to overlook the fact that the other components are
equally important. There is no simple recipe for choosing
each component, but the next sections touch on some of the
key issues. And, as we will see below, some choices in a
machine learning project may be even more important than
the choice of learner.

3. IT’S GENERALIZATION THAT COUNTS
The fundamental goal of machine learning is to generalize
beyond the examples in the training set. This is because,
no matter how much data we have, it is very unlikely that
we will see those exact examples again at test time. (No-
tice that, if there are 100,000 words in the dictionary, the
spam filter described above has 2100,000 possible different in-
puts.) Doing well on the training set is easy (just memorize
the examples). The most common mistake among machine
learning beginners is to test on the training data and have
the illusion of success. If the chosen classifier is then tested
on new data, it is often no better than random guessing. So,
if you hire someone to build a classifier, be sure to keep some
of the data to yourself and test the classifier they give you
on it. Conversely, if you’ve been hired to build a classifier,
set some of the data aside from the beginning, and only use
it to test your chosen classifier at the very end, followed by
learning your final classifier on the whole data.

Algorithm 1 LearnDT(TrainSet)

if all examples in TrainSet have the same class y∗ then
return MakeLeaf(y∗)

if no feature xj has InfoGain(xj ,y) > 0 then
y∗ ← Most frequent class in TrainSet
return MakeLeaf(y∗)

x∗ ← argmaxxj InfoGain(xj ,y)
TS0 ← Examples in TrainSet with x∗ = 0
TS1 ← Examples in TrainSet with x∗ = 1
return MakeNode(x∗, LearnDT(TS0), LearnDT(TS1))

Contamination of your classifier by test data can occur in
insidious ways, e.g., if you use test data to tune parameters
and do a lot of tuning. (Machine learning algorithms have
lots of knobs, and success often comes from twiddling them
a lot, so this is a real concern.) Of course, holding out
data reduces the amount available for training. This can
be mitigated by doing cross-validation: randomly dividing
your training data into (say) ten subsets, holding out each
one while training on the rest, testing each learned classifier
on the examples it did not see, and averaging the results to
see how well the particular parameter setting does.

In the early days of machine learning, the need to keep train-
ing and test data separate was not widely appreciated. This
was partly because, if the learner has a very limited repre-
sentation (e.g., hyperplanes), the difference between train-
ing and test error may not be large. But with very flexible
classifiers (e.g., decision trees), or even with linear classifiers
with a lot of features, strict separation is mandatory.

Notice that generalization being the goal has an interesting
consequence for machine learning. Unlike in most other op-
timization problems, we don’t have access to the function
we want to optimize! We have to use training error as a sur-
rogate for test error, and this is fraught with danger. How
to deal with it is addressed in some of the next sections. On
the positive side, since the objective function is only a proxy
for the true goal, we may not need to fully optimize it; in
fact, a local optimum returned by simple greedy search may
be better than the global optimum.

• Representation: algorithm, implementation
• Evaluation: metric selection, results based on real data
• Optimization: from off-the-shelf optimizers to custom designed ones

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://www.jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf
http://www.jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf
http://www.jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf

Machine Learning (ML) Overview: Input for algorithm
=> an example of usual input for common supervised learning setting

Feature Extraction

Feature Selection

Dimensionality Reduction

Feature Scaling

Raw Data Collection

Pre-Processing

Sampling

Test Dataset

Training Dataset

Learning Algorithm
Training

Post-Processing

Cross Validation

Final Classification/
Regression Model

New DataPre-Processing

Refinement

Prediction

Split

Supervised
Learning

Sebastian Raschka 2014

Missing Data

Performance Metrics

Model Selection

Hyperparameter
Optimization

This work is licensed under a Creative Commons Attribution 4.0 International License.

Final Model
Evaluation

data	example

Prof. Pedro Domingos from the University of Washington, in his paper titled, “A Few
Useful Things to Know about Machine Learning” tells us the following. “At the end of
the day, some machine learning projects succeed and some fail. What makes the
difference? Easily the most important factor is the features used.”

Key factor in ‘Traditional ML’ ≈ Feature engineering
=> correct use of inputs is key for a successful ML application

Image	processing: Audio	signal	processing:

NLP:

PoS	tagging NER Stammer

Machine Learning (ML) Overview: Input for algorithm
=> an example of usual input for common supervised learning setting

Deep learning:
Basics

Deep learning is Representation Learning (RL)
- learning a hierarchy of features directly from the data instead of hand engineering

Source: https://deeplearning.mit.edu/

2019https://deeplearning.mit.eduFor the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Deep Learning is Representation Learning
(aka Feature Learning)

[20]

Deep
Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

Example: Representation Matters

Task: draw a line to separate the green triangles and blue circles

Source: https://deeplearning.mit.edu/

Example: DL = RL (aka Feature Learning)
- hidden layer in NN learns a representation so that the data is
linearly separable

Task: draw a line to separate the blue curve and red curve

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Hidden [2] Input [2] Output

Example: DL = RL (aka Feature Learning)
- hidden layer in NN learns a representation so that the data is
linearly separable

Task: draw a line to separate the blue curve and red curve

Source: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Hidden [2] Input [2] Output

Q: Why DL?
A: Scalable ML learning (end to end learning)

Source: https://deeplearning.mit.edu/

Q: Why DL?
A: Scalable ML learning (end to end learning)

Source: https://deeplearning.mit.edu/

Why Now?

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Why Now?

1952 Stochastic Gradient
Descent

1958 Perceptron
• Learnable Weights

1995 Deep Convolutional NN
• Digit Recognition

1986 Backpropagation
• Multi-Layer Perceptron

1. Big Data
• Larger Datasets
• Easier Collection

& Storage

2. Hardware
• Graphics

Processing Units
(GPUs)

• Massively
Parallelizable

3. Software
• Improved

Techniques
• New Models
• Toolboxes

Neural Networks date back decades, so why the resurgence?

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Why Now?

1952 Stochastic Gradient
Descent

1958 Perceptron
• Learnable Weights

1995 Deep Convolutional NN
• Digit Recognition

1986 Backpropagation
• Multi-Layer Perceptron

1. Big Data
• Larger Datasets
• Easier Collection

& Storage

2. Hardware
• Graphics

Processing Units
(GPUs)

• Massively
Parallelizable

3. Software
• Improved

Techniques
• New Models
• Toolboxes

Neural Networks date back decades, so why the resurgence?

Source: https://introdeeplearning.com/

How to do DL: Simple example

https://deeplearning.mit.edu/

Source: https://deeplearning.mit.edu/

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

https://deeplearning.mit.edu/

2019https://deeplearning.mit.eduFor the full list of references visit:

https://hcai.mit.edu/references

Deep Learning in One Slide

• What is it:
Extract useful patterns from data.

• How:
Neural network + optimization

• How (Practical):
Python + TensorFlow & friends

• Hard Part:
Good Questions + Good Data

• Why now:
Data, hardware, community, tools,

investment

• Where do we stand?
Most big questions of intelligence

have not been answered nor

properly formulated

Exciting progress:
• Face recognition

• Image classification

• Speech recognition

• Text-to-speech generation

• Handwriting transcription

• Machine translation

• Medical diagnosis

• Cars: drivable area, lane keeping

• Digital assistants

• Ads, search, social recommendations

• Game playing with deep RL

Source: https://deeplearning.mit.edu/

2019https://deeplearning.mit.eduFor the full list of references visit:
https://hcai.mit.edu/references

TensorFlow in One Slide

• What is it: Deep Learning Library (and more)
• Facts: Open Source, Python, Google

• Community:
• 117,000+ GitHub stars
• TensorFlow.org: Blogs, Documentation, DevSummit, YouTube talks

• Ecosystem:
• Keras: high-level API
• TensorFlow.js: in the browser
• TensorFlow Lite: on the phone
• Colaboratory: in the cloud
• TPU: optimized hardware
• TensorBoard: visualization
• TensorFlow Hub: graph modules

• Alternatives: PyTorch, MXNet, CNTK

Extras:
• Swift for TensorFlow
• TensorFlow Serving
• TensorFlow Extended (TFX)
• TensorFlow Probability
• Tensor2Tensor

Recommended course and materials:
• CS 20: Tensorflow for Deep Learning

Research:
◇ http://web.stanford.edu/class/

cs20si/
• Tensorflow Tutorials & Guides:

◇ https://www.tensorflow.org/tutorials
◇ https://www.tensorflow.org/guide

Source: https://deeplearning.mit.edu/

Perceptron:
Structural Building Block of DL

Source: MIT 6.S191: http://introtodeeplearning.com

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

The Perceptron: Forward Propagation

!"

!#

!$ Σ&$

&#

&"
'(= * +

,-"

#
& , ! ,

Non-linear
activation function

Output
Linear combination

of inputs

'(

Inputs Weights Sum Non-Linearity Output

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

Input

Sum Nonlinearity Output

w0 (bias)

Weights

Perceptron (Neuron): Forward propagation

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

Recall: ‘Rosenblatt’ perceptron

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

The Perceptron: Forward Propagation

!"

!#

!$ Σ&$

&#

&"
'(= * +

,-"

#
& , ! ,

Non-linear
activation function

Output
Linear combination

of inputs

'(

Inputs Weights Sum Non-Linearity Output

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

Input

Sum Nonlinearity Output

w0 (bias)

Weights

Neuron: Forward propagation (vectorized notation)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&"
() = + !%+ -

./"

#
& . ! .

Σ ()

Output

The Perceptron: Forward Propagation

() = + !%+1 23

where: 1 =
&"
⋮
&#

and3 =
!"
⋮
!#

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

The Perceptron: Forward Propagation

!"

!#

!$ Σ&$

&#

&"
'(= * +

,-"

#
& , ! ,

Non-linear
activation function

Output
Linear combination

of inputs

'(

Inputs Weights Sum Non-Linearity Output

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

Input

Sum Nonlinearity Output

w0 (bias)

Weights

Neuron: Forward propagation (activation function)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&"
Σ)*

Output

The Perceptron: Forward Propagation

)* = , !%+./0

Activation Functions

• Example: sigmoid function

, 1 = 2 1 = 1
1 + 3 45

1

2D line

Neuron: forward propagation example

Neuron: forward propagation example

2D line

2D line

Neuron example (logistic regression)

(logistic)

NOTE: all activation functions are non-linear, why?, important hyperparameter

Commonly used now New trend
• Swish

Traditional

- Searching for
activation
functions

Common activation functions

https://medium.com/@jaiyamsharma/experiments-with-swish-activation-function-on-mnist-dataset-fc89a8c79ff7

Linear Activation

functions produce linear

decisions no matter the

network size

Non-linearities allow us to

approximate arbitrarily

complex functions

Importance of activation functions
- The purpose of activation functions is to introduce non-linearities into
the network

Building Artificial
Neural Networks

Source: MIT 6.S191: http://introtodeeplearning.com

Artificial Neuron: Simplified Display

Artificial Neuron: Simplified Display

Artificial Neuron: Simplified Display

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

The Perceptron: Simplified

!"

!#

!$

% & = (%

% =)* +,
-.$

#
!-)-

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

The Perceptron: Simplified

!"

!#

!$

% & = (%

% =)* +,
-.$

#
!-)-

Artificial Neuron: Multi Output Perceptron

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Multi Output Perceptron

!"

!#

!$

%"

%$
&$ = (%$

&" = (%"

%) = *+,) +./0$

#
!/ */,)

(Goodfellow 2017)

Output Types
Output Type Output

Distribution
Output
Layer

Cost
Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Gaussian Linear Gaussian cross-
entropy (MSE)

Continuous Mixture of
Gaussian

Mixture
Density Cross-entropy

Continuous Arbitrary See part III: GAN,
VAE, FVBN Various

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Multi Output Perceptron

!"

!#

!$

%"

%$
&$ = (%$

&" = (%"

%) = *+,) +./0$

#
!/ */,)

Artificial Neuron Network (with one hidden layer)

Artificial Neuron Network (with one hidden layer)

 Hidden layer
Input

Output

- Number of neurons: 4 + 2 (input layer is not counted)
- Number of parameters: 3*4 + 4*2 + bias (4 + 2) = 26

g()

linear/nonlinearity
before output?

Artificial Neuron Network (with one hidden layer)
- Simplified display for fully connected (Dense) layers

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Multi Output Perceptron

Inputs

!"

!#

!$

Hidden

%&

%"

'("

'($

Output

%$

%)*

from tf.keras.layers import *

inputs = Inputs(m)
hidden = Dense(d1)(inputs)
outputs = Dense(2)(hidden)
model = Model(inputs, outputs)

Deep (Feed-Forward) Neuron Network
- Simplified display for fully connected (Dense) layers

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Deep Neural Network

Inputs

!"

!#

!$

Hidden

%&,(

%&,"

)*"

)*$

Output

%&,$

%&,+,

%&,- = /0,-
(&) +4

56$

+,78
9(%&:$,5) /5,-

(&)

⋯ ⋯

- here z value is a layer output before nonlinearity (depends on convention)
- in general each layer k can have different nonlinearity
- this depends on architecture choice

k-1

Layer type: fully-connected (Danse) layer

3-layer Neural Network with:
- three inputs &
- two hidden layers of 4 neurons each &
- one output layer
- Total number neurons: 4 + 4 + 1 = 9
- Total of learnable parameters:

- [3x4] + [4*4] + [4x1] + 4 + 4 +1
(biases) = 41

2-layer Neural Network with:
- three inputs &
- one hidden layer of 4 neurons (or units) &
- one output layer with 2 neurons.
- Total number neurons: 4 + 2 = 6
- Total of learnable parameters:

- [3x4] + [4x2] + 4 + 2 (biases) = 26

Deep (Feed-Forward) Naming convention

Power of NN: Universal Approximation Theorem
A feed-forward network with a single layer is sufficient to represent (**not learn**)

an approximation of any function to an arbitrary degree of accuracy
(for Intuitive explanation read: http://neuralnetworksanddeeplearning.com/chap4.html)

So why deep NN?
- Shallow net may need (exponentially) more width
- Shallow net may overfit more (may not generalize)

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

Example: Better Generalization with Greater Depth

Effect of depth. Effect of number of parameters.

Goodfellow et. al., Deep Learning, 2017, http://www.deeplearningbook.org/ (Chapter 6)

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/

Deep Neural Networks

DL: Training and Testing

https://deeplearning.mit.edu/Lex Fridman
lex.mit.edu

January
2018

MIT 6.S094: Deep Learning for Self-Driving Cars
https://selfdrivingcars.mit.edu

Deep Learning: Training and Testing

Input
Data

Learning
System

Correct
Output

Training Stage:

New Input
Data

Learning
System Best Guess

Testing Stage:

(aka “Ground Truth”)

What we can do with deep learning?

Lex Fridman
lex.mit.edu

January
2018

MIT 6.S094: Deep Learning for Self-Driving Cars
https://selfdrivingcars.mit.edu

What can we do with Deep Learning?

Input
Data

Learning
System

Correct
Output

• Number
• Vector of numbers
• Sequence of numbers
• Sequence of vectors of numbers

• Number
• Vector of numbers
• Sequence of numbers
• Sequence of vectors of numbers

Lex Fridman
lex.mit.edu

January
2018

MIT 6.S094: Deep Learning for Self-Driving Cars
https://selfdrivingcars.mit.edu

What can we do with Deep Learning?

Input
Data

Learning
System

Correct
Output

• Number
• Vector of numbers
• Sequence of numbers
• Sequence of vectors of numbers

• Number
• Vector of numbers
• Sequence of numbers
• Sequence of vectors of numbers

Q: How NN Learns?

Lex	Fridman
lex.mit.edu	

January
2018

MIT	6.S094:	Deep	Learning	for	Self-Driving	Cars
https://selfdrivingcars.mit.edu

How	Neural	Networks	Learn:	Backpropagation

Input
Data

Neural	
Network Prediction

Forward	Pass:

Backward	Pass	(aka	Backpropagation):

Neural	
Network

Measure
of	Error

Adjust	to	Reduce	Error

Q: How NN Learns?
A: Backpropagation + Gradient Descent
Backpropagation is a method to update the weights in the neural network by
taking into account the actual output and the desired output. The derivative
with respect to each weight is computed using the chain rule.

Forward pass to compute network output and “error” Backward pass to compute gradients A fraction (learning rate) of the weight’s

gradient is subtracted from the weight

Recommended reading:
• Backprop is very simple (‘by hand explanation’):

◇ URL: goo.gl/tYVG6J
• Automatic differentiation in machine learning: a survey

◇ https://arxiv.org/abs/1804.07612

https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1804.07612

Basic concepts of NN Training: Quantifying Loss
=> The loss of our network measures the cost incurred from incorrect predictions

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Example Problem: Will I pass this class?

!"

!#

$%

$" &'#

$#

Predicted: 0.1
Actual: 1! # = 4 ,5

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Quantifying Loss

!"

!#

$%

$" &'#

$#

Predicted: 0.1
Actual: 1

The loss of our network measures the cost incurred from incorrect predictions

ℒ , !(.); 1 , '(.)
Predicted Actual

! # = 4 ,5

Basic concepts of NN Training: Empirical Loss

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5

=> The empirical loss measures the total loss over our entire dataset

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

Basic concepts of NN Training: Cross Entropy Loss

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

=> Cross entropy loss can be used with models that output a probability between 0 and 1

Binary Cross Entropy Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Cross entropy loss can be used with models that output a probability between 0 and 1

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
'(3) log + ! 3 ;/ + (1 − '(3)) log 1 − + ! 3 ;/

PredictedActualPredictedActual

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

Binary Cross Entropy Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Cross entropy loss can be used with models that output a probability between 0 and 1

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
'(3) log + ! 3 ;/ + (1 − '(3)) log 1 − + ! 3 ;/

PredictedActualPredictedActual

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

Basic concepts of NN Training: Mean Squared Error

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5

6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/28/19

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

=> Mean squared error loss can be used with regression models that output continuous real numbers

Mean Squared Error Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Mean squared error loss can be used with regression models that output continuous real numbers

5
1
8
⋮

) =
30
80
85
⋮

+(!)

90
20
95
⋮

'

. / = 1
1234#

5
' 3 − + ! 3 ;/

"

PredictedActual

loss = tf.reduce_mean(tf.square(tf.subtract(model.y, model.pred))

Final Grades
(percentage)

Mean Squared Error Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Mean squared error loss can be used with regression models that output continuous real numbers

5
1
8
⋮

) =
30
80
85
⋮

+(!)

90
20
95
⋮

'

. / = 1
1234#

5
' 3 − + ! 3 ;/

"

PredictedActual

loss = tf.reduce_mean(tf.square(tf.subtract(model.y, model.pred))

Final Grades
(percentage)

Mean Squared Error Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Mean squared error loss can be used with regression models that output continuous real numbers

5
1
8
⋮

) =
30
80
85
⋮

+(!)

90
20
95
⋮

'

. / = 1
1234#

5
' 3 − + ! 3 ;/

"

PredictedActual

loss = tf.reduce_mean(tf.square(tf.subtract(model.y, model.pred))

Final Grades
(percentage)

Basic concepts of NN Training: Learning is optimization problem

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Loss Optimization

We want to find the network weights that achieve the lowest loss

!∗ = argmin
!

1
+,-./

0
ℒ 2 3(-);! , 8(-)

!∗ = argmin
!

9(!)

Remember:
! = !(:),!(/),⋯

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Loss Optimization

We want to find the network weights that achieve the lowest loss

!∗ = argmin
!

1
+,-./

0
ℒ 2 3(-);! , 8(-)

!∗ = argmin
!

9(!)

Remember:
! = !(:),!(/),⋯
NN parameters

We want to find the network weights that achieve the lowest loss

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

Basic concepts of NN Training: Gradient Descent

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)

(we could initialize NN in different ways; spoiler – transfer learning)

(computationaly
heavy to compute
for large datasets!)

learning rate

Basic concepts of NN Training: Stochastic Gradient Descent

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick single data point)
4. Compute gradient, *+,(-)*-
5. Update weights, - ←-− 0 *+(-)*-
6. Return weights

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick batch of) data points

4. Compute gradient, *+(,)*, = .
/∑12.

/ *+3(,)
*,

5. Update weights, , ←,− 6 *+(,)*,
6. Return weights

Stochastic Gradient Descent: Mini-Batch Gradient Descent
à easy to compute, but very noisy à fast to compute, much better at estimating ‘true’ gradient

Basic concepts of NN Training: Mini-batches while training

Mini-Batch size: Number of training instances, which
the network evaluates per weight update step.
• Larger batch size = more computational speed
• Smaller batch size = (empirically) better

generalization

Recommendations:
• “Training with large minibatches is bad for your health. More importantly, it's bad for your test error.

Friends don’t let friends use minibatches larger than 32.” - Yann LeCun:
◇ Revisiting Small Batch Training for Deep Neural Networks (2018)

▪ https://arxiv.org/abs/1804.07612
• It is hyperparametar usually based on memory constraints (if any, not commonly cross-validated),

or set to some value, e.g. 32, 64 or 128. We use powers of 2 in practice because many vectorized
operation implementations work faster when their inputs are sized in powers of 2. – A. Karpathy
(cs231n Notes)

https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1804.07612

Basic concepts of NN Training: Adaptive Learning Rates

Recommended reading (for details):
• http://ruder.io/optimizing-gradient-descent/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Adaptive Learning Rate Algorithms

• Momentum
• Adagrad
• Adadelta
• Adam
• RMSProp

Additional details: http://ruder.io/optimizing-gradient-descent/

tf.train.MomentumOptimizer

tf.train.AdagradOptimizer

tf.train.AdadeltaOptimizer

tf.train.AdamOptimizer

tf.train.RMSPropOptimizer

Qian et al. “On the momentum term in gradient
descent learning algorithms.” 1999.

Duchi et al. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization.” 2011.

Zeiler et al. “ADADELTA: An Adaptive Learning Rate
Method.” 2012.

Kingma et al. “Adam: A Method for Stochastic
Optimization.” 2014.

http://ruder.io/optimizing-gradient-descent/

Basic concepts of NN Training: Regularization
=> Technique that constrains our optimization problem to discourage complex models

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

The Problem of Overfitting

Underfitting
Model does not have capacity

to fully learn the data

Ideal fit Overfitting
Too complex, extra parameters,

does not generalize well

Improve generalization of our model on unseen data

Regularization: Dropout
=> During training, randomly set some activations to 0

Typically ‘drop’ 50% of activations in layer

Forces network to not rely on any 1 node

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Regularization 1: Dropout

!"

!#

!$

%&"

%&$

'$,#

'$,"

'$,$

'$,)

'",#

'","

'",$

'",)

• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Regularization 1: Dropout

!"

!#

!$

%&"

%&$

'$,#

'$,"

'$,$

'$,)

'",#

'","

'",$

'",)

• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)

Regularization: Dropout implementation example

(http://cs231n.github.io/)

http://cs231n.github.io/
http://cs231n.github.io/
http://cs231n.github.io/

Regularization: Early stopping
=> Stop training before we have chance to overfit

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Stop training
here!

Over-fittingUnder-fitting

Testing

• Stop training before we have a chance to overfit

Demo: Neural Network Playground
https://playground.tensorflow.org

https://playground.tensorflow.org
https://playground.tensorflow.org

Hands-on Materials

https://tinyurl.com/y5jb7d7b

https://tinyurl.com/y5jb7d7b

Deep Neural Networks

https://github.com/lexfridman/mit-deep-learning/blob/master/tutorial_deep_learning_basics/deep_learning_basics.ipynb

Deep Neural Networks

=> image classification, object detection, video action recognition

=> semantic segmentation, machine translation

=> sequence modeling, language modeling, speech recognition

=> unsupervised generation of realistic images

https://github.com/lexfridman/mit-deep-learning/blob/master/tutorial_deep_learning_basics/deep_learning_basics.ipynb

Introduction
Deep Learning and Autoencoders

Autoencoder
=> neural networks in unsupervised learning setting

negative sampling,
hierarchical softmax

http://jalammar.github.io/illustrated-word2vec/=> Word2Vec

data denoising

dimensionality reduction?

reconstruction
loss

back-propagating the gradient
from the soft-max classifier to
the dense word vectors such
that the cross entropy loss of
the classifier is minimized.

https://github.com/lesley2958/word2vec/blob/master/word2vec.ipynb

http://jalammar.github.io/illustrated-word2vec/
https://github.com/lesley2958/word2vec/blob/master/word2vec.ipynb

Neural Machine Translation: Encoder-Decoder architecture
- the sequence-to-sequence model

En
co

de
r R

N
N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il a m’ entarté

The sequence-to-sequence model
Target sentence (output)

Decoder RN
N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

he

ar
gm

ax
he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

with a pie <END>

me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

24

(words are usually represented with word2vec)

http://jalammar.github.io/illustrated-transformer/For state of the art see Transformer architecture:

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
http://jalammar.github.io/illustrated-transformer/

Recurrent Neural Network (RNN)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: computational graph across time

RNN

!"

#$"

!%

#$%

!&

#$&

!'

#$'

!"

#$"

=
…

…

()* ()* ()* ()*

(**

(*+ (*+ (*+ (*+

(** (**

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNN state update and output

ℎ" = tanh()**ℎ"+, +).*/")
Update Hidden State

12" =)*3ℎ"
Output Vector

Input Vector

RNN

/"

12"

input vector

recurrent cell

output vector

ℎ"

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: computational graph across time

RNN

!"

#$"

!%

#$%

!&

#$&

!'

#$'

!"

#$"

=
…

…

Re-use the same weight matrices at every time step

()* ()* ()* ()*

(**

(*+ (*+ (*+ (*+

(** (**

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

ℎ"

#" #$ #%

ℎ&

#&…
'() '() '() '()

')) ')) '))

Many values > 1:
exploding gradients

Gradient clipping to
scale big gradients

Standard RNN gradient flow: exploding gradients

Computing the gradient wrt ℎ" involves many factors of *++ (and repeated ,′!)

[1]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

ℎ"

#" #$ #%

ℎ&

#&…
'() '() '() '()

')) ')) '))

Many values > 1:
exploding gradients

Gradient clipping to
scale big gradients

Standard RNN gradient flow: exploding gradients

Computing the gradient wrt ℎ" involves many factors of *++ (and repeated ,′!)

[1]

BPTT

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

ℎ"

#" #$ #%

ℎ&

#&…
'() '() '() '()

')) ')) '))

Many values > 1:
exploding gradients

Gradient clipping to
scale big gradients

Standard RNN gradient flow: exploding gradients

Computing the gradient wrt ℎ" involves many factors of *++ (and repeated ,′!)

[1]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

ℎ"

#" #$ #%

ℎ&

#&…
'() '() '() '()

')) ')) '))

Largest singular value < 1:
vanishing gradients

1. Activation function
2. Weight initialization
3. Network architecture

Largest singular value > 1:
exploding gradients

Gradient clipping to
scale big gradients

Standard RNN gradient flow: vanishing gradients

Computing the gradient wrt ℎ" involves many factors of *++ (and repeated ,′!)

[1]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

LSTM gradient flow
Backpropagation from !" to !"#$ requires only elementwise multiplication!

No matrix multiplication à avoid vanishing gradient problem.

ℎ"#$ ℎ"

ℎ"

&"

' ' tanh '

tanh
,"#$,"

!" = ." ∗ !"#$ + 1" ∗ 2!"

[2, 5]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

LSTM gradient flow
Backpropagation from !" to !"#$ requires only elementwise multiplication!

No matrix multiplication à avoid vanishing gradient problem.

ℎ"#$ ℎ"

ℎ"

&"

' ' tanh '

tanh
,"#$,"

!" = ." ∗ !"#$ + 1" ∗ 2!"

[2, 5]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Solution #3: gated cells

gated cell
LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.

Idea: use a more complex recurrent unit with gates to
control what information is passed through

Adapted from H. Suresh, 6.S191 2018

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L2.pdf

https://datascience-enthusiast.com/DL/Building_a_Recurrent_Neural_Network-Step_by_Step_v1.html

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L2.pdf
https://datascience-enthusiast.com/DL/Building_a_Recurrent_Neural_Network-Step_by_Step_v1.html

Sequence-to-sequence models: Encoder-Network architecture
- many NLP tasks can be modeled as sequence to sequence

Machine Translation: text → translated text

Summarization: long text → short text

Dialogue (Chatbot): previous utterances → next utterances

Code generation: text in natural language → Python code

DL Library:
• https://github.com/tensorflow/tensor2tensor/#summarization

https://github.com/tensorflow/tensor2tensor/#summarization

Convolutional Neural Networks (CNN)
= recall CNN: http://cs231n.github.io/convolutional-networks/

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201622

preview:

1. CONV: Convolution: Apply filters with learned weights to generate feature maps.
2. RELU: Non-linearity: Often ReLU.
3. POOL: Pooling: Downsampling operation on each feature map
4. FC: Fully connected layer
+
Dropout, Batch/Layer normalization

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

http://cs231n.github.io/convolutional-networks/

Fully Connected (FC) Layer

28x28x1

32x32x3 image -> vectorize in 1D array : 3072 x 1

W x
input vector

[3072]
weights

[10 x 3072]
activation

[10]

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- Many, many, too many parameters

Convolution (CONV) Layer
- Use spatial structure of the input connecting patches of the input to neurons in hidden layer
- Applying filters to extract features:

1. Applying set of weights (filter) to extract local features
2. Use multiple filters to extract different features
3. Spatially share parameters of each filter (feature from one part matter elsewhere)

Convolution operation

https://indoml.com/

1. Overlay the filter to the input, perform element wise multiplication and add the result
2. Move the filter to the right one position (according to the stride setting)

Today number of calculations: (4 x 4) x (3 x 3) = 144.

 Stride Padding

https://indoml.com/

DEMO: Convolution operation

https://ml4a.github.io/demos/convolution_all/

Filter
Feature map

https://ml4a.github.io/demos/convolution_all/

Original Image

Sharpen Edge Detect Strong Edge Detect

CONV operation
=> producing Feature Maps

http://graphicsminer.com/kernel

http://graphicsminer.com/kernel

Convolution operation Volume

https://indoml.com/

The total number of multiplications to calculate the result is (4 x 4) x (3 x 3 x 3) = 432.

https://indoml.com/

Example of visualization of obtained Feature Maps

How to Visualize Filters and Feature Maps in Convolutional Neural Networks,
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/

Visualization of the Feature Maps Extracted From the First Convolutional Layer in the VGG16 Model

https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/

CONV Layer - Example
= recall CNN: http://cs231n.github.io/convolutional-networks/

Input volume: 32x32x3
CONV: 10 5x5 filters with stride 1, pad 2

Output volume size?
(32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
(+1 for bias) => 76*10 = 760

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

CNNs: Spatial Arrangement of Output Volume

depth

width

height

Layer Dimensions:
ℎ " # " $

where h and w are spatial dimensions
d (depth) = number of filters

Receptive Field:
Locations in input image that
a node is path connected to

Stride:
Filter step size

[3]

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201644

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

1x1 CONV
(32 filters)

64

56

56

32

56

56

=> each filter has size
1x1x64, and performs
a 64-dimensional dot
product

http://cs231n.stanford.edu

CONV operation is translation equivariant (not invariant)

= num of filters

http://cs231n.github.io/convolutional-networks/
http://cs231n.stanford.edu/

RELU Layer - Example
= recall CNN: http://cs231n.github.io/convolutional-networks/

http://cs231n.stanford.edu

- Apply after every convolution operation (i.e.,after CONV layers)
- Operates over each activation map independently
- It is pixel-by-pixel operation => replaces all negative values to 0

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Introducing Non-Linearity

! " = max (0 , ")

Rectified Linear Unit (ReLU)- Apply after every convolution operation (i.e., after
convolutional layers)

- ReLU: pixel-by-pixel operation that replaces all negative
values by zero. Non-linear operation!

[5]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Introducing Non-Linearity

! " = max (0 , ")

Rectified Linear Unit (ReLU)- Apply after every convolution operation (i.e., after
convolutional layers)

- ReLU: pixel-by-pixel operation that replaces all negative
values by zero. Non-linear operation!

[5]

http://cs231n.github.io/convolutional-networks/
http://cs231n.stanford.edu/

POOL Layer - Example MAX POOLING
= recall CNN: http://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/

- Makes the representations smaller and more manageable
- Operates over each activation map independently

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201655

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201654

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201657

Common settings:

F = 2, S = 2
F = 3, S = 2

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201657

Common settings:

F = 2, S = 2
F = 3, S = 2

=> Are CNN translation invariant? What about scale and rotation invariance?

http://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

CNN Architectures

http://cs231n.stanford.edu

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

ImageNet Challenge: Classification Task

20
10

20
11

20
12

20
13

20
14

20
15

Human
0

10

20

30

cl
as

si
fic

at
io

n
er

ro
r %

28.2
25.8

16.4

11.7

6.7
3.57

5.1

2012: AlexNet. First CNN to win.
- 8 layers, 61 million parameters
2013: ZFNet
- 8 layers, more filters
2014: VGG
- 19 layers
2014: GoogLeNet
- “Inception” modules
- 22 layers, 5million parameters
2015: ResNet
- 152 layers

[6,7]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

ImageNet Challenge: Classification Task

20
10

20
11

20
12

20
13

20
14

20
15

Human
0

10

20

30

cl
as

si
fic

at
io

n
er

ro
r %

28.2
25.8

16.4

11.7

6.7
3.57

5.1

2012: AlexNet. First CNN to win.
- 8 layers, 61 million parameters
2013: ZFNet
- 8 layers, more filters
2014: VGG
- 19 layers
2014: GoogLeNet
- “Inception” modules
- 22 layers, 5million parameters
2015: ResNet
- 152 layers

[6,7]

ImageNet Challenge:
Classification Task

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019

Case Study: VGGNet

39

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019

Case Study: VGGNet

39

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19

Stack of three 3x3 conv
(stride 1) layers has same
effective receptive field
as one 7x7 conv layer

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201950

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201950

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

GoogleLeNetFei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201978

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

..

.

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

ResNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201978

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

..

.

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

http://cs231n.stanford.edu/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

ImageNet Challenge

Classification task: produce a list of object categories present in image. 1000 categories.
“Top 5 error”: rate at which the model does not output correct label in top 5 predictions

Other tasks include:
single-object localization, object detection from video/image, scene classification, scene parsing

[6,7]

CNN are ubiquitous:
=> workhorse for Computer Vision applications

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Beyond Classification

Object Detection

CAT, DOG, DUCK

Semantic Segmentation

CAT

Image Captioning

The cat is in the grass.

ImageNet Challenge: Classification Task Image memorability score

Fully Convolutional Networks
(FCN)

[Fast, Faster] R-CNN +
YOLO v1,2,3

CNN + RNN

Transfer learning with CNN

http://cs231n.stanford.edu

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201910

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201913

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201916

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 201917

Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!

He et al, “Rethinking ImageNet Pre-training”, arXiv 2018

however,
not always necessary

He et al, “Rethinking ImageNet Pre-training”, 2018

http://cs231n.stanford.edu/

Face recognition - CNN Siamese network + One-shot learning

One-shot Learning
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

- Learn image representations with siamese NN (learning ‘similarity’ function)
- Reuse features from the network for one-shot learning

 Deep Face Recognition: A Survey, 2018.

The contrastive loss requires face image pairs and then pulls together positive pairs and pushes
apart negative pairs.

"Dimensionality Reduction by Learning an Invariant Mapping", 2006.

 "FaceNet: A Unified Embedding for Face Recognition and Clustering.", 2015

The Triplet loss involves an anchor example and one positive or matching example (same class) and one negative
or non-matching example (differing class). The loss function penalizes the model such that the distance between the
matching examples is reduced and the distance between the non-matching examples is increased.
It is crucial to select hard triplets, that are active and can therefore contribute to improving the model. (inspired by curriculum learning)

Siamese network

This should be distinguished from zero-shot learning, in which the model
cannot look at any examples from the target classes.

In the case of one-shot learning, a single exemplar of an object class is
presented to the algorithm.

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://arxiv.org/abs/1804.06655
https://ieeexplore.ieee.org/abstract/document/1640964
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

8ME�4+NR�5EAPMIMG�

n  HPb=3�B	fPh�=	bWAc�[TPa]X]V�

��

T’: Testing task T: Training task �

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

L’: Label set �

S’: Support set� : Query �

automobile �

cat �

deer�

bP?B[X]V�B�[PQT[b�UaA?�Hl�

bP?B[X]V�=�TgP?B[Tb�UaA?�#l� bP?B[X]V��TgP?B[T�UaA?�#l�
x̂

•  HPb=3�R[PbbXUh������X]cA�,�
R[PbbTb%�jPdcA?AQX[T%�RPc%�
STTak%�dbX]V�bdBBAac�bTc�

x̂

https://www.cs.toronto.edu/~kriz/cifar.html�

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

8ME�4+NR�5EAPMIMG�

n  HPb=3�B	fPh�=	bWAc�[TPa]X]V�

��

T’: Testing task T: Training task �

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

L’: Label set �

S’: Support set� : Query �

automobile �

cat �

deer�

bP?B[X]V�B�[PQT[b�UaA?�Hl�

bP?B[X]V�=�TgP?B[Tb�UaA?�#l� bP?B[X]V��TgP?B[T�UaA?�#l�
x̂

•  HPb=3�R[PbbXUh������X]cA�,�
R[PbbTb%�jPdcA?AQX[T%�RPc%�
STTak%�dbX]V�bdBBAac�bTc�

x̂

https://www.cs.toronto.edu/~kriz/cifar.html�

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

8ME�4+NR�5EAPMIMG�

n  HPb=3�B	fPh�=	bWAc�[TPa]X]V�

��

T’: Testing task T: Training task �

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

L’: Label set �

S’: Support set� : Query �

automobile �

cat �

deer�

bP?B[X]V�B�[PQT[b�UaA?�Hl�

bP?B[X]V�=�TgP?B[Tb�UaA?�#l� bP?B[X]V��TgP?B[T�UaA?�#l�
x̂

•  HPb=3�R[PbbXUh������X]cA�,�
R[PbbTb%�jPdcA?AQX[T%�RPc%�
STTak%�dbX]V�bdBBAac�bTc�

x̂

https://www.cs.toronto.edu/~kriz/cifar.html�

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

8ME�4+NR�5EAPMIMG�

n  HPb=3�B	fPh�=	bWAc�[TPa]X]V�

-�

T’: Testing task T: Training task �

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

dog �

frog�

horse�

ship �

truck�

airplane�

automobile �

bird �

cat �

deer�

L’: Label set �
bP?B[X]V�B�[PQT[b�UaA?�Hl�

• ]�cWXb�nVdaT%�#l�WPb�,�R[PbbTb%�cWdb�
m,	fPh�=	bWAc�[TPa]X]Vo�

automobile �

cat �

deer�

https://www.cs.toronto.edu/~kriz/cifar.html�

Task: N-way k-shot learning

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

8ME�4+NR�5EAPMIMG�

n  #TPa]�P�RA]RTBc�UaA?�A]T�Aa�A][h�P�UTf�caPX]X]V�TgP?B[Tb�
u  5�R[PbbXnTa�RP]�QT�caPX]TS�Qh�SPcPbTcb�fXcW�[PQT[b�fWXRW�SA]lc�

QT�dbTS�X]�BaTSXRcX]V�BWPbT�

�

airplane�

automobile �

bird �

cat �

deer�

Classifier�

TgP?B[Tb� #PQT[b�

0 airplane�

1 automobile �

0 bird �

0 cat �

0 deer�

Classifier�

sDaT	tHaPX]X]V�BWPbT� DaTSXRcX]V�BWPbTsA]T	bWAc�[TPa]X]V�BWPbTt�

https://www.cs.toronto.edu/~kriz/cifar.html�

dog �

frog�

horse�

ship �

truck�

Classifier�

TgP?B[Tb� #PQT[b�

Copyright	(C)	DeNA	Co.,Ltd.	All	Rights	Reserved.	

�SOEPTI4ED�5EAPMIMG�

n  #TPa]�P�RAaaTbBA]ST]RT�QTcfTT]�caPX]X]V�SPcP�P]S�[PQT[b�
u  FTCdXaT�P�[PaVT�[PQT[TS�SPcPbTc�UAa�caPX]X]V�

"Tg
�7 :5F)�N?aXiWTeb=h�%�+))2O3�/)))�SPcP�(�R[Pbb��
u  c�Xb�WPaS�cA�[Tc�R[PbbXnTab�[TPa]�]Tf�RA]RTBcb�UaA?�[Xcc[T�SPcP�

)�

airplane�

automobile �

bird �

cat �

deer�

Classifier�

TgP?B[Tb� #PQT[b�

0 airplane�

1 automobile �

0 bird �

0 cat �

0 deer�

Classifier�

HaPX]X]V�BWPbT� DaTSXRcX]V�BWPbT�

https://www.cs.toronto.edu/~kriz/cifar.html�

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i/

https://msiam.github.io/Few-Shot-Learning/
https://www.sicara.ai/blog/2019-07-30-image-classification-few-shot-meta-learning

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i/
https://msiam.github.io/Few-Shot-Learning/
https://www.sicara.ai/blog/2019-07-30-image-classification-few-shot-meta-learning

Semantic segmentation: Encoder-Decoder Network architecture
- SegNet, DeconvNet, U-Net

Encoder:
- takes input image and generates feature vector
- aggregate features at multiple levels

Decoder:
- takes feature vector and generates segmentation map
- decode features aggregated by encoder

Down Sampling Up Sampling

Encoding Block Types:
• VGG, Inception, ResNet

Decoding Block Types:
• VGG, Inception, ResNet

Basic Building Blocks:

Encoder-Decoder Networks
Different Encoding Block Types

Max-Pool

Conv 3x3

Conv 3x3

Conv 3x3

Input

Output

• VGG
• Inception
• ResNetd

Encoder-Decoder Networks
Different Encoding Block Types

• VGG
• Inception
• ResNet

Max-Pool

Conv 1x1

Conv 3x3

Concat

Input

Output

Max-Pool

Conv 1x1

Conv 1x1

Conv 5x5

Conv 1x1

Encoder-Decoder Networks
Different Encoding Block Types

• VGG
• Inception
• ResNet

Conv 3x3

Conv 3x3

Sum

Input

Output

Encoder-Decoder Networks
Different Decoding Block Types

Un-Pool

Conv 3x3

Conv 3x3

Conv 3x3

Input

Output

• VGG
• Inception
• ResNet

Encoder-Decoder Networks
Different Decoding Block Types

Deconv 1x1

Conv 1x1

Conv 3x3

Concat

Input

Output

Max-Pool

Conv 1x1

Conv 1x1

Conv 5x5

Conv 1x1

• VGG
• Inception
• ResNet

Encoder-Decoder Networks
Different Decoding Block Types

DeConv 3x3

Sum

Input

Output

• VGG
• Inception
• ResNet

U-Net Example: https://github.com/hspitzer/histo-seg/blob/master/tutorial-segmentation.ipynb

https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96
https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e
https://towardsdatascience.com/review-u-net-biomedical-image-segmentation-d02bf06ca760
https://github.com/hspitzer/histo-seg/blob/master/tutorial-segmentation.ipynb

Acknowledgement: List of basic materials
Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Deep Learning Book:
• https://github.com/janishar/mit-deep-learning-book-pdf

Courses:
• Introduction to Deep Learning, MIT S191

- Good materials for basic (easy/soft) introduction to DL models
- We did not cover:

- Deep Generative Models (Variational Autoencoders + Generative Adversarial Networks)
- Deep Reinforcement Learning

• Stanford CS231n, http://cs231n.stanford.edu/
- Good introduction to deep learning for Computer Vision application
- Must read lecture notes: http://cs231n.github.io/ (Neural networks, Convolutional Neural Networks)

• Stanford CS224n, https://web.stanford.edu/class/cs224n/
- Good introduction to deep learning for NLP applications
- Notes for word2vec, seq2seq models

• Deep Learning, MIT, https://deeplearning.mit.edu/
- Deep Learning - State of the Art, 2018
- List of some more advanced DL topics

• Representation Learning, Mila IFT 6135
- https://sites.google.com/mila.quebec/ift6135/lectures?authuser=0
- Attention, Self-Attention and Transformers

http://www.deeplearningbook.org/
https://github.com/janishar/mit-deep-learning-book-pdf
http://introtodeeplearning.com/#schedule
http://cs231n.stanford.edu/
http://cs231n.github.io/
https://web.stanford.edu/class/cs224n/
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf
https://deeplearning.mit.edu/
https://www.dropbox.com/s/v3rq3895r05xick/deep_learning_state_of_the_art.pdf?dl=0
https://sites.google.com/mila.quebec/ift6135/lectures?authuser=0
https://sites.google.com/mila.quebec/ift6135/lectures?authuser=0
https://www.dropbox.com/s/7sov3snzt2jcefc/SelfAttentionAndTransformers.pdf?dl=0

DL models: Limitations

• Very data hungry (e.g. often minion of examples)
• Computationally intensive to train and deeply (requires GPU)

• Easily fooled by adversarial examples
• Can be subject to algorithmic bias

• Poor representing uncertainty (how do you know what the model knows?)
• Uninterpretable black boxes, difficult to trust

• Finicky to optimize: non-convex, choice of architecture, learning parameters
• Often require expert knowledge to design, fine tune architectures

https://tinyurl.com/y5h9oojn

Additional DL Topics: Materials

https://tinyurl.com/y5h9oojn

